Schlagwort: american physical society

Hiranya Peiris

* 1974

Hiranya Periris kam 1974 in Sri Lanka zur Welt. Mit 24 Jahren schloss sie 1998 den Tripos in Naturwissenschaften am New Hall College der University of Cambridge ab, anschließend studierte sie Astrophysik an der Princeton University und machte dort ihren Doktortitel. Dort arbeitete sie ebenfalls, wie Jo Dunkley, an der Auswertung der Daten der Wilkinson Microwave Anisotropy Probe (WMAP) mit.

Nach ihrer Promotion war sie Hubble Fellow am Kavli Institute for Cosmological Physics der University of Chicago und absolvierte diverse Postdoktorand:innen-Stellen, bis sie 2007 advanced fellow am Science and Technology Facilities Council der University of Cambridge wurde und im Folgejahr Forschungsstipenidatin am dortigen King’s College. 2009 erhielt sie eine Stelle in der Fakultät für Kosmologie des University College London; dort hält sie derzeit eine Professur für Astrophysik. Sie ist auch die Leiterin des Oskar Klein Centre for Cosmoparticle Physics (Link Englisch) in Stockholm.

2012 wurde Peiris gemeinsam mit dem WMAP-Team mit dem Gruber-Preis für Kosmologie ausgezeichnet. Stephen Hawking nannte die Erkenntnisse, zu denen Peiris unter anderem beitrug, „die aufregendste Entwicklung in der Physik seiner gesamten Karriere“.

Hiranya Peiris zeigte sich 2014 skeptisch, was die mögliche Entdeckung von Gravitationswellen des Urknalls angeht, und sollte Recht behalten: Innerhalb des folgenden Jahres stellte sich heraus, dass die Daten, die als solche gedeutet wurden, sämtlich auf Staub in unserer eigenen Galaxie zurückzuführen waren.

Für 2021 erhielt Hiranya Peiris den Göran-Gustafsson-Preis der Königlich Schwedischen Akademie der Wissenschaften. Sie ist Mitglied der American Physical Society und Vizepräsidentin der Royal Astronomical Society.

SIe gab 2017 bei der Künstlerin Penelope Rose Cowley das Werk Cosmoparticle in Auftrag, dessen Entstehung unten im YT-Clip nachverfolgt werden kann.

Penelope Rose Cowley: Cosmoparticle, für Hiranya Peiris

Ibtesam Badhrees

20. Jhdt.

Ibtesam Badhrees (Link Englisch) kam in Dschidda, Saudi-Arabien, zur Welt. 1990 machte sie ihren BSc in Physik an der König-Abdulaziz-Universität, setzte ihr Studium fort bis zu einem MSc in Angewandter Physik (Laser) an der Farleigh Dickinson University in New Jersey, USA und schloss 2011 mit einem Doktor (PhD) in Teilchenphysik an der Universität Bern ab. Sie hat außerdem einen Doktortitel für Internationale Beziehungen der Geneva School of Diplomacy and International Relations.

Ihre Forschungsgebiete sind Experimentelle Elementarteilchenphysik, Astrophysik, Medizinische Physik und Kernphysik.

Badhrees war die erste saudi-arabische Frau am CERN und die erste saudi-arabische Frau mit einem Doktortitel, die am National Center for Mathematics and Physics der König-Abdulaziz-Universität arbeitet. Sie ist außerdem Privatdozentin an der Carleton University in Ottawa, Kanada.

Sie erhielt 1996, 1997 und 2007 Preise für ihre wissenschaftliche Arbeit von der saudi-arabischen Regierung, und die American Physical Society wählte sie als Physikerin des Monates im August 2014.

43/2020: Margaret Kivelson, 21. Oktober 1928

Margaret Kivelson kam in New York als Tochter eines Arztes und einer Physikerin zur Welt. Entgegen der Empfehlung eines Onkels, sie solle – als Mädchen – am besten Ernährungsberaterin werden, verfolgte sie schon früh eine Karriere in der Wissenschaft.

Sie studierte von 1946 an Physik am Radcliffe College, das zur ansonsten nur für männliche Studenten zugänglichen Harvard University gehörte. Dort machte sie 1950 mit 22 Jahren ihren Bachelor Sc., zwei Jahre später den Master Sc. 1955 folgte sie ihrem Ehemann nach Los Angeles und begann in Teilzeit bei der RAND Corporation zu arbeiten, einer Denkfabrik zur Beratung der US-amerikanischen Streitkräfte. Hier war sie bis 1971 auf dem Gebiet der Plasmaphysik tätig, nebenher studierte sie weiter auf einen Doktorgrad Physik.

Als Kivelson 1957 ihren PhD erlangte, mit einer Dissertation über „Die Bremsstrahlung von hochenergetischen Elektronen‚, war sie eine von weniger als 2% weiblicher Doktorandinnen. Sie hatte 1955 bereits ein Kind mit ihrem Mann bekommen und wurde nach ihrer Promovierung ein zweites Mal Mutter. Dafür, dass sie ‚trotz Kindern‘ weiterhin wissenschaftlich arbeitete, wurde sie in Kollegenkreisen kritisiert. Sie ließ sich jedoch nicht entmutigen und wurde 1967 neben ihrer Teilzeitarbeit bei der RAND Corporation als Forschungsasstistentin für Geophysik an der UCLA eingestellt. 1971 wurde sie hier Adjunkt Assistenzprofessorin, dafür beendete sie ihre Arbeit in der Denkfabrik.

Als Physikerin war sie daran beteiligt, die Daten der Pioneer-10 sowie der Pioneer-11 auszuwerten, Raumsonden der NASA, die den Jupiter, Saturn und die äußeren Ränder unseres Sonnensystems erforschten. Zu diesem Zeitpunkt begann sich Margaret Kivelson auf dem Gebiet der Magnetosphären zu spezialisieren.

1973 erhielt sie ein einjähriges Guggenheim-Stipendium, was ihr nach eigener Aussage zum ersten Mal das Gefühl gab, als Wissenschaftlerin ernstgenommen zu werden. „Mehr als Geld, gab es mir Status und steigerte mein Selbstbewusstsein entscheidend.“ (Quelle: Wiki Englisch) Sie schlug der NASA schon 1976 vor, die Galileo-Raumsonde mit Magnetometern auszustatten. Nach den Daten der Pioneer-Missionen stellte sie außerdem 1979 die Vermutung auf, dass nicht nur Planeten, sondern auch Monde ein inneres Magnetfeld haben könnten.

Ende der 1970er, Anfang der 1980er Jahre folgten dem Stipendium auch eine Volle Professur sowie der Vorsitz des Fachbereichs für Erd- und Weltraum-Wissenschaften an der UCLA sowie eine Professur am Institute of Geophysics and Planetary Physics (die deutschen und englischen Wiki-Beiträge sind sich hier nicht einig mit den Daten). 1989 ging die Galileo-Mission endlich an den Start und Margaret Kivelson war daraufhin in der Lage, ihre Vermutung zu bestätigen: Sie entdeckte und erforschte das innere Magnetfeld des Jupitermondes Ganymed, außerdem entdekcte sie das innere Magnetfeld des Jupitermondes Io. Im gleichen Zuge der Galileo-Mission konnte Kivelson auch das Magnetfeld des Asteroiden Gaspra erforschen.

2009 wurde Margaret Kivelson Distinguished Professor of Space Physics Emerita der UCLA und sie trat noch eine weitere Professur an der University of Michigan an. In ihrem Arbeitsleben – mindestens bis 2010 war sie noch akademisch und forschend tätig – war sie Autorin und Ko-Autorin von 350 wissenschaftlichen Schriften. 1989 wurde sie als Fellow der American Association for the Advancement of Science gewählt, 1998 in die American Academy of Arts and Sciences aufgenommen, 1999 in die National Academy of Sciences, 2001 in die American Physical Society, 2005 in die American Philosophical Society.

Und noch in diese Jahr 2020 wurde sie als auswärtiges Mitglied der Royal Society aufgenommen.

*

Ebenfalls diese Woche

19. Oktober 1909: Marguerite Perey
Nachdem sie bis 1934 im Radiuminstitut Paris als Assistentin von Marie Curie gearbeitet hatte, entdeckte die Chemikerin und Physikerin 1939 das letzte zu der Zeit unentdeckte, natürlich vorkommende Element Francium, das zu Ehren ihres Herkunftslandes Frankreich seinen Namen erhielt.

20. Oktober 1859: Margaret Jane Benson (Link Englisch)
Sie gehörte zu den ersten Frauen, die zu Mitgliedern der Linnean Society of London gewählt wurden. Als Paläobotanikerin reiste sie gemeinsam mit Ethel Sargant.

20. Oktober 1942: Christiane Nüsslein-Volhard
Die Biologin und Biochemikerin erhielt 1995 den Nobelpreis für Physiologie oder Medizin über die genetische Kontrolle der frühen Embryonalentwicklung.

23. Oktober 1854: Annie Lorrain Smith (Link Englisch)
Mit Lichens (Flechten) schrieb die englische Mykologin ein Lehrbuch, das auf ihrem Fachgebiet jahrzentelang als Standardwerk galt.

23. Oktober 1913: Alma Howard (Link Englisch)
Die englisch-kanadische Strahlenbiologin entwickelte mit ihrem Physikerkollegen Stephen Pelc erstmalig eine zeitlichen Ablauf des Zellkreislaufes.

24. Oktober 1732: Cristina Roccati (Link Englisch)
Als dritte Frau überhaupt erlangte die Physikerin 1751 einen Abschluss an einer italienischen Universität.

37/2020: Idelisa Bonnelly, 10. September 1931

Idelisa Bonnelly (Link Englisch) kam in Santiago de los Caballeros, der zweitgrößten Stadt der Dominikanischen Republik, zur Welt. Mit 22 Jahren schrieb sie sich an der Columbia University in New York ein und machte dort drei Jahre später ihre Bachelor of Science in Meeresbiologie. Anschließend studierte sie bis zu ihrem Mastertitel 1961 an der New York University, danach arbeitete sie als Forschungsassistentin am New York Aquarium (Link Englisch). Bereits im Folgejahr kehrte sie in ihre Heimat in der Karibik zurück, um an der Universidad Autónoma de Santo Domingo den ersten Fachbereich ihres Heimatlandes für das Fach Biologie zu gründen.

1966 gründete Idelisa Bonnelly das Institut für Meeresbiologie an der Universität in Santo Domingo, aus dem später das Forschungszentrum für Meeresbiologie (Centro de Investigación de Biología Marina, CIBIMA) hervorgehen sollte. Dort lehrte sie von 1967 bis 1986, im Anschluss war sie weitere sechs Jahre als Studienkoordinatorin dort tätig.

Auch die Akademie der Wissenschaft der Dominikanischen Republik gründete Bonnelly, im Jahr 1974. Sie veröffentlichte zahlreiche Arbeiten, die großen Einfluss auf den Erhalt der Meeresressourcen hatten und zur Grundlage von Umweltrecht hinsichtlich der Küste und des Meeres der Dominikanischen Republik wurden. In den 1980er Jahren war sie entscheidend beteiligt an der Schaffung eines Schutzgebiets für Buckelwale vor der Küste von Hispaniola. Dafür erhielt sie 1986 den Verdienstorden für Frauen in der Wissenschaft von der Regierung der Republik. Im folgenden Jahr wurde ihr der National Science Prize von der Akademie der Wissenschaften verliehen, die UN nahm sie in die Global 500 Roll of Honour des UNEP auf.

Ihre Universität verlieh ihr 1990 die Ehrendoktorwürde. Kurz darauf gründete sie die Dominikanische Stiftung der Meeresforschung (Fundación Dominicana de Estudios Marinos, FUNDEMAR), die auch ein Reservat für Meeressäuger betreibt. Sie schloss sich auch der Organization for Women in Science for the Developing World (TWOWS, Link Englisch) an.

Neben anderen Auszeichungen erhielt sie auch 2009 die Marie Curie Medaille der UNESCO, die BBC nannte sie 2013 eine der zehn wichtigsten weiblichen Wissenschaftlerinnen von Lateinamerika.

Ebenfalls diese Woche

7. September 1830: Mary Treat (Link Englisch)
Die amerikanische Naturkundlerin schrieb in 28 Jahren 76 Artikel zu diversen Themen, von Insektenkunde über Ornithologie bis hin zur Botanik, in der zweiten Hälfte ihres Lebens verdiente sie damit ihren Lebensunterhalt nach der Trennung von ihrem Ehemann. Über fünf Jahre, beginnend 1871, korrespondierte sie mit Charles Darwin über fleischfressende Pflanzen.

10. September 1859: Marcia Keith (Link Englisch)
Von dieser amerikanischen Physikerin wird angenommen, dass sie die individuelle Laborarbeit von Schülern der Naturwissenschaften einführte. Sie unterrichtete Mathematik und Physik und war Gründungsmitglied der American Physical Society.

10. September 1907: Dorothy Hill (Link Englisch)
Die australische Paläontologin war Australiens erste weibliche Universitätsprofessorin und die erste weibliche Präsidentin der Australian Academy of Sciences.

11. September 1845: Mary Anne Stebbing (Link Englisch)
Viele der Zeichnungen dieser botanischen Illustratorin verbrannten 1881, doch einige befinden sich noch im Archiv der Royal Botanic Gardens in Kew.

12. September 1897: Irène Joliot-Curie
Als Tochter der ersten Nobelpreisträgerin überhaupt war sie prädestiniert für große wissenschaftliche Erkenntnisse. Die Chemikerin und Physikerin erhielt 1935 selbst den Nobelpreis in Chemie, gemeinsam mit ihrem Mann Frédéric Joliot-Curie, für die Entdeckung der künstlichen Radioaktivität.

Isabelle Stone

* 1868 • † 1944

Isabelle Stone (Link Englisch) kam in Chicago zur Welt, besuchte das Wellesley College in Masschusetts und die Columbia University in New York, ihren Doktortitel in Physik machte sie an der University of Chicago. Zu diesem Zeitpunkt war sie die erste US-amerikanische Frau mit einer Promotion in diesem Fach.

Beim Internationalen Kongress der Physiker in Paris (Datum unbekannt) war sie eine von zwei Frauen unter 836 Besuchern – die andere Frau war Marie Curie. Sie gehörte außerdem zu den Gründungsmitgliedern der American Physical Society.

Isabelle Stone untersuchte den elektrischen Widerstand von dünnen Schichten. In ihrer Doktorarbeit wies sie nach, dass Dünnschichten von Metallen eine höhere elektrische Leitfähigkeit aufweisen als das gleiche Metall in massiven Körpern.

26/2020: Maria Goeppert-Mayer, 28. Juni 1906

Maria Goeppert wurde in Katowice, damals Preußen, in eine Familie von Professoren geboren. Als sie 10 Jahre alt war, zog sie mit ihren Eltern nach Göttingen. Dort besuchte sie eine höhere Schule, die speziell Mädchen für ein Universitätsstudium vorbereiten sollte; mit 17, ein Jahr früher als ihre Komiliton:innen, machte sie als eines von drei oder vier Mädchen das Abitur.

Zunächst studierte sie an der Universität Göttingen Mathematik, zu dieser Zeit um 1924 müsste sie auch Emmy Noether dort angetroffen haben. Nach drei Jahren Studium wechselte Goeppert jedoch zur Physik, in der sie nach weiteren drei Jahren ihre Dissertation über die Theorie der Zwei-Photonen-Absorption schrieb. Diese Theorie, dass ein Molekül oder Atom zur gleichen Zeit (innerhalb von 0,1 Femtosekunde) zwei Photonen aufnehmen kann und dabei in einen energetisch angeregten Zustand übergeht, konnte zu dieser Zeit nicht experimentell nachgewiesen werden. Dieses Ereignis ist extrem unwahrscheinlich: Die Absorption eines Photons in einem Molekül oder Atom geschieht in etwa einmal pro Sekunde unter guten Bedingungen, das heißt bei hoher Lichteinstrahlung. Die gleichzeitige Absorption zweier Photonen tritt hingegen unter den gleichen Bedingungen nur alle 10 Millionen Jahre auf. Erst 1961 konnte Goepperts Theorie dank der Erfindung des Lasers nachgewiesen werden, die Einheit, in der die Wahrscheinlichkeit einer Zwei-Photonen-Absorption gemessen wird, heißt ihr zu Ehren GM (Goeppert-Mayer). Ihre Prüfer im Rigorosum waren Max Born, James Franck und Adolf Windaus, alles drei zu diesem Zeitpunkt oder spätere Nobelpreisträger. Eugene Wigner, ebenfalls Nobelpreisträger, bezeichnete ihre Arbeit später als „Meisterwerk der Klarheit und Greifbarkeit“.

Im gleichen Jahr, in dem sie ihren Doktortitel errang, hatte sie auch Joseph Edward Mayer geheiratet, einen Fellow der Rockefeller Foundation und Assistent von James Franck. Mit ihm zog sie nach ihrer Promotion in die USA, wo Mayer als außerordentlicher Professor an der Johns Hopkins University lehrte. Goeppert-Mayer konnte dort keine Anstellung finden, denn die Hochschule hatte strenge Nepotismus-Regeln, die die gleichzeitige Beschäftigung von Ehepaaren untersagten. Diese waren ursprünglich eingerichtet worden, um Gönnerschaft zu unterbinden, doch inzwischen hielten sie hauptsächlich die Ehefrauen der Professoren von beruflicher Tätigkeit auf dem Campus ab. Goeppert-Mayer konnte sich schließlich gegen sehr kleines Gehalt im Fachbereich für Physik an der deutschen Korrespondenz beteiligen, so hatte sie auch Zugang zu den Laboren. In dieser Zeit arbeitete sie mit Karl Herzfeld an seinen Forschungen zur Quantenmechanik, sie unterrichtete auch unentgeltlich und schrieb eine Arbeit über doppelten Betazerfall. Sie kehrte bis 1933 noch dreimal nach Göttingen zurück, unter anderem um dort mit Max Born an einem Artikel für das Handbuch der Physik zu arbeiten. 1933 verloren Born und James Franck aufgrund der Judenverfolgung unter der faschistischen Regierung Deutschlands ihre Stellen an der Göttinger Universität, James Franck folgte seinem ehemaligen Assistenten nach Baltimore.

1937 wurde Mayer allerdings von der Johns Hopkins Universität entlassen, die Gründe dafür sind unklar. Mayer vermutete Misogynie, nämlich dass der Dekan es nicht gerne sähe, wie frei Mayer seiner Frau Zugang zu den Laboren gewährte. Herzfeld stimmte ihm zu, möglicherweise fühle sich aber auch das amerikanische Kollegium von „zu vielen Deutschen“ (das Ehepaar Goeppert-Mayer, Herzfeld und Franck) überrannt. Es soll auch Beschwerden über die Inhalte des Chemie-Unterrichts gegeben haben, den Goeppert-Mayer hielt: Sie spreche zu viel über moderne Physik. Goeppert-Mayer lehrte noch bis 1939 in Baltimore, dann wechselte das Ehepaar gemeinsam an die Columbia University in New York. Joseph Mayer konnte dort als Professor lehren, Maria Goeppert-Mayer bekam hier zwar ein eigenes Büro, doch für ihre Tätigkeit an der Fakultät wiederum kein Gehalt.

An der Columbia University freundete sich Goeppert-Mayer mit dem Chemiker Harold Urey und dem Physiker Enrico Fermi an und schloss sich deren Forschungen an, zu den Valenzelektronen der bis dahin noch unentdeckten transuranischen Elementen. Die Anzahl der Valenzelektronen, das heißt der Elektronen auf der äußersten Schale eines Elements, die an chemischen Verbindungen beteiligt sein können, bestimmen die Zugehörigkeit zu den unterschiedlichen Gruppen des Periodensystems und lassen Vermutungen über ähnliche chemikalische Eigenschaften zu. Basierend auf dem Thomas-Fermi-Modell, das die Elektronenhülle wie eine Gaswolke interpretiert, stellte Goeppert-Mayer die Voraussage auf, dass die Elemente, die im Periodensystem hinter dem Uran folgen müssten, zur Gruppe der Metalle der Seltenen Erden gehören würden. Diese Voraussage sollte sich als wahr herausstellen.

1941 wurde Maria Goeppert-Mayer zur Fellow der American Physical Society und im Dezember dieses Jahres trat sie ihre erste bezahlte Lehrtätigkeit am Sarah Lawrence College an. Nachdem die USA in den Zweiten Weltkrieg eingetreten waren, schloss sie sich im Folgejahr in Teilzeit dem Manhattan-Projekt an. Ihre Aufgabe wurde es, einen Weg zu finden, das Isotop 235U, einen wichtigen Spaltstoff, in natürlichem Uran auszusondern. Dafür untersuchte Goeppert-Mayer die chemischen und thermodynamischen Eigenschaften von Uranhexafluorid (Uran(VI)-fluorid), einer Verbindung von Uran und Fluor. Sie erwog die Möglichkeit, das gewünschte Isotop mit Hilfe einer photochemischen Reaktion aus dem Stoff auszufällen, doch dies war zu dem Zeitpunkt noch nicht praktikabel; auch hier wurde die Erfindung des Lasers notwendig, um Goeppert-Mayers Theorien in die Praxis umzusetzen.

Ihr Freund Edward Teller holte sie auch kurzzeitig ins Team seines Opacity Project, das die Erschaffung einer Superbombe (Link Englisch) anstrebte. Ihr Mann wurde an die Front im Pazifik berufen, und Goeppert-Mayer beschloss, die beiden Kinder in New York zu lassen und mit Teller in Los Alamo am Project Y zu arbeiten.

Nach dem Ende des Krieges wurde Joseph Mayer Professor für Chemie an der University of Chicago, Maria Goeppert-Mayer wurde von der Hochschule als freiwillige außerordentliche Professorin eingestellt. Teller folgte ihr nach Illinois, um die Entwicklung thermonuklearer Waffen voranzutreiben. Als ihr eine Teilzeitstelle am Argonne National Laboratory angeboten wurde, als leitende Physikerin in der Abteilung für theoretische Physik, antwortete sie erstaunlicherweise: „Ich verstehe nichts von Kernphysik!“ Sie trat die Stelle jedoch an. Außerdem programmierte sie den ENIAC des Aberdeen Proving Ground auf eine bestimmte Vorgehensweise für Schnelle Brüter.

Ihre wichtigeste, erfolgreichste Arbeit leistete Goeppert-Mayer trotz dieser vielseitigen Einsätze in den 1940ern. Während sie an der University of Chicago und dem Argonne angestellt war, entwickelte sie ein mathematisches Modell für den Aufbau des Schalenmodells, das sie 1950 veröffentlichte. Sie erklärte, warum eine bestimmte Anzahl Nukleone (Protonen und Neutronen) in Atomkernen besonders häufig vorkamen und besonders stabil sind. Diese Zahlen nannte Eugene Wigner die ‚Magischen Zahlen‚, die Reihe der „stabilen“ Protonen- und Neutronen-Anzahlen lautet 2, 8, 20, 28, 50, 82 und 126. Das Schalenmodell war für die Elektronen-aufenthaltswahrscheinlichkeitsräume des Atoms bereits erfolgreich, doch vom Atomkern bestand zu diesem Zeitpunkt noch ein anderes Modell, welches jedoch nicht die Inseln der Stabilität in den Elementen erklärte. Im Gespräch mit Enrico Fermi stellte dieser Goeppert-Mayer die Frage, ob es einen Hinweis auf Spin-Bahn-Kopplung gäbe – einen Zusammenhang des Spin, also der Eigendrehung eines Teilchens, und seiner Bahn, also seiner Bewegung innerhalb des Atoms, der sich in der Stärke der Wechselwirkung des Teilchens bemerkbar macht. Diese Kopplung war für Elektronen bekannt, doch angestoßen von Fermis Frage stellte Goeppert-Mayer die Theorie auf, dass dieser Effekt auch im Atomkern wirke und konnte so die Bedeutung der ‚magischen Zahlen‘ in der Kernphysik erklären. Sie erläuterte es kurz und anschaulich wie folgt:

Denken Sie an einen Raum voller Walzertänzer:innen. Nehmen wir an, sie durchtanzen den Raum in Kreisen, jeder Kreis umschlossen von einem weiteren Kreis. Nun stellen Sie sich vor, Sie könnten zweimal so viele Tänzer:innen in einem Kreis unterbringen, indem Sie ein Paar mit und das andere Paar entgegen dem Uhrzeigersinn tanzen lassen. Nun bringen Sie noch weitere Variationen ein; alle Paare drehen sich um sich selbst wie Kreisel, während sie durch den Raum kreisen, jedes Paar dreht sich also um sich selbst (twirling) und durch den Raum (circling). Aber nur einige von denen, die gegen den Uhrzeigersinn durch den Raum tanzen, drehen sich auch im Uhrzeigersinn um sich selbst. Die anderen drehen sich im Uhrzeigersinn um sich selbst, während sie gegen den Uhrzeigersinn durch den Raum tanzen. Das gleiche ist wahr für die, die im Uhrzeigersinn durch den Raum tanzen: Einige drehen sich im Uhrzeigersinn um sich selbst, andere dagegen.

Übersetzt nach dem Abschnitt ‚Nuclear shell modell‘ des englischen Wikipediabeitrags

Zum gleichen Schluss waren zeitgleich die Physiker Otto Haxel, Hans D. Jensen und Hans E. Suess in Hamburg gekommen; Goeppert-Mayers Arbeit wurde zur Prüfung im Februar 1949 eingereicht, die der Hamburger Forscher im erst im April. Als Goeppert-Mayer in Juni 1949 die Ankündigung der Ergebnisse ihrer Kollegen las, versuchte sie noch, ihre Veröffentlichung zu verschieben, damit beide Arbeiten nebeneinander erscheinen könnten, doch dies ließ sich nicht mehr einrichten. So wurde zuerst Goeppert-Mayer als die Entdeckerin des Schalenmodells für den Atomkern bekannt. Es entstand jedoch ein gutes kollegiales Verhältnis zwischen Goeppert-Mayer und Jensen und die beiden brachten 1950 gemeinsam ein Buch zu ihrer Theorie heraus.

In den 1950er Jahren wurde Maria Goeppert-Mayer Mitglied der Heidelberger Akademie der Wissenschaften und der National Academy of Sciences, doch erst 1960 wurde sie endlich vollwertiges Mitglied einer Fakultät, als sie den Lehrstuhl für Physik an der University of California übernahm. Bereits kurz darauf erlitt sie einen Schlaganfall, der sie jedoch nicht von der Arbeit abhalten sollte. 1963 erhielt sie gemeinsam mit Hans D. Jensen eine Hälfte des Nobelpreises für Physik, die andere Hälfte erhielt Eugene Wigner. Goeppert-Mayer war die zweite weibliche Gewinnerin dieses Preises nach Marie Curie, 60 Jahre zuvor. Zu dieser Errungenschaft titelte damals die San Diego Tribune: ‚S.D. Mother Wins Nobel Physics Prize‘ (‚Mutter aus San Diego gewinnt Physik Nobelpreis‘). Hierzu bezog die Nachfolgepublikation The San Diego Union-Tribune im Oktober 2018 Stellung, anlässlich der Verleihung des Nobelpreises für Physik an die dritte Frau überhaupt, Donna Strickland, 55 Jahre nach Goeppert-Mayer.

Zwei Jahre später wurde sie zum Fellow der American Academy of Arts and Sciences. 1971 erlitt sie einen Schlaganfall, in dessen Folge sie ein Jahr lang im Koma lag, bis sie am 20. Februar 1972 verstarb. Die American Physical Society rief 1986 den Maria Goeppert-Mayer Award ins Leben, der jugnen Physikerinnen verliehen wird. Gewinnerinnen müssen einen Doktortitel innehaben, sie erhalten einen Geldbetrag und die Möglichkeit, an vier größeren Institutionen Vorträge über ihre Arbeit zu halten. Auch das Argonne National Laboratory verleiht jedes Jahr im Namen Goeppert-Mayers einen Preis an herausragende Wissenschaftlerinnen, ihre letzte Universität in Kalifornien hält ein jährliches Symposium in ihrem Namen, in dem Wissenschaftlerinnen zusammenkommen. Ein Krater auf der Venus von 35 Kilometer Durchmesser ist nach Maria Goeppert-Mayer benannt.

*

Ebenfalls diese Woche

22. Juni 1939: Ada Yonath
Über diese Chemikerin schrieb ich im Juni 2018.

23. Juni 1871: Jantine Tammes
Die Leidtragende des Matilda-Effektes trug entscheidende Erkenntnisse zur Pflanzengenetik bei, die jedoch ihrem männlichen Kollegen zugeschrieben wurden.

23. Juni 1951: Maria Klawe
Die amerikanische Informatikerin leitet seit 2006 als erste Frau das Harvey Mudd College in Kalifornien.

26. Juni 1862: Ella Church Strobell (Link Englisch)
Gemeinsam mit ihrer Kollegin Katharine Foot trug die Zellbiologin mit Fotografien zum besseren Verständnis der Chromosomen und ihrer Funktion bei.

WEG MIT
§218!