Schlagwort: physik

38/2020: Ursula Franklin, 16. September 1921

Ursula Franklin kam als Ursula Martius in München zur Welt, als Tochter eines Ethnographen und einer Kunsthistorikerin; der Vater war Protestant, die Mutter Jüdin. Als Deutschland in Polen einmarschierte, versuchten ihre Eltern, sie auf eine englische Schule zu senden, doch es fehlten ihr wenige Tage für zum notwenigen Alter von 18 Jahren, um ein Studentenvisum zu erhalten. Ursula ging stattdessen 1940 nach Berlin, um an der Universität Berlin Physik und Chemie zu studieren. Sie sollte später einmal sagen, dass sie sich für diese Fächer entschied, weil es ihr eine ’suberversive Freude‘ bereitete: „Kein Wort der Autorität konnte die Gesetze der Physik oder die Abläufe der Mathematik verändern“. (Quelle: Wiki Englisch) 1942 wurde sie jedoch als ‚Halbjüdin‚ zwangsexmatrikuliert und in ein Arbeitserziehungslager verbracht, in dem sie dazu eingesetzt wurde, zerbombte Häuser wieder aufzubauen. Ihre Eltern wurden beide in Konzentrationslager deportiert. Erst nach dem Ende des Zweiten Weltkrieges wurde die Familie in Berlin wiedervereint.

Ursula Martius kritisierte bald nach Kriegsende bereits den zweifelhaften Umgang der detuschen Gesellschaft mit dem Faschismus. Sie schrieb 1946 an Otto Hahn über die deutschen Physikerkollegen: „Was die Leute aufbauen, es wird immer eine Kaserne, eine Kaserne, in der ich nicht sehr große Lust habe, zu leben.“ (Quelle: Wiki Deutsch) Im kommenden Jahr griff sie in einem Artikel in der Deutschen Rundschau die Deutsche Physikalische Gesellschaft dafür an, mit den Mitgliedern, die offen und zu ihrem Vorteil Nationalsozialisten waren, nachsichtig zu sein: „Menschen, die mir immer noch in meinen Angstträumen erscheinen, saßen da lebendig und unverändert in den ersten Reihen.“ (Quelle: Quelle: „Physiker zwischen Autonomie und Anpassung: Die Deutsche Physikalische Gesellschaft im Dritten Reich“) Sie nannte neben Hans Otto Kneser, mit dem sie möglicherweise selbst bei ihrer Zwangsexmatrikulierung zu tun hatte, auch Pascual Jordan, Herbert Arthur Stuart und Erich Schumann. Während die DPG darüber diskutierte und abwiegelnd reagierte, machte Ursula Martius ihren Doktortitel in Experimentalphysik an der Technischen Universität Berlin bei Hartmut Kallmann, der selbst von der Judenverfolgung betroffen gewesen war. Sie suchte verständlicherweise nach Möglichkeiten für eine Emigration aus Deutschland, dass sie sowohl im Dritten Reich wie auch in seinem anschließenden apologetischen Umgang mit den verbleibenden Nationalsozialisten enttäuscht hatte. Als sie 1949 eine Postdoktorand:innen-Stelle an der University of Toronto antreten konnte, verließ sie ihr Geburtsland für immer.

Sie heiratete Fred Franklin, der ebenfalls in Deutschland als Jude verfolgt worden war und im Exil in England mit dem Quäkertum in Berührung gekommen war. Gemeinsam mit ihm sollte sie später, auf der Suche nach einer spirituellen Heimat für ihre Familie, ganz zum Quäkertum konvertieren.

Im Jahr ihrer Eheschließung, 1952, begann sie bei der Ontario Research Foundation zu arbeiten, zunächst als Forschungsstipendiatin, später als leitende Wissenschaftlerin. Sie wurde zur Spezialistin für Archäometrie, also der Anwendung naturwissenschaftlicher Methoden zur Klärung von archäologischen Fragen. Zum Beispiel fand Franklin mit Hilfe physikalischer Analysemethoden heraus, dass das schwarze Eisenoxid auf prähistorischen, chinesischen Bronze-Fundstücken kein zufälliges Ergebnis war, sondern mit Absicht auf die „Schwarzen Spiegel“ aufgetragen worden war. Auch die Altersermittlung von Glas gehörte zu ihrer Expertise, so leitete sie eine Studie zu Überresten von Glasperlen, die zur Bezahlung unter anderem im Sklavenhandel verwendet wurden (Link Englisch).

1967 wurde sie an der University of Toronto die erste außerordentliche Professorin für den Fachbereich Metallurgie und Materialwissenschaft. Sechs Jahre später wurde sie volle Professorin. In den 1970er Jahren saß sie einer Studie vor, die die Möglichkeiten des Ressourcenerhalts und des Naturschutzes untersuchte – ihre Arbeit daran lag ihrer späteren Philosophie der Technik zugrunde.

Franklin war auch politisch aktiv, unter anderem in der Organistation Voice of Women (heute Canadian Voice of Women for Peace, Link Englisch). Durch diese war sie an der Baby Tooth Survey (Link Englisch) beteiligt, einer Studie, die anhand der Untersuchung von Milchzähnen menschlicher Kinder die Auswirkungen von Kernwaffenttests untersuchte. Mit Postern in Klassenzimmern wurden Grundschulkinder aufgefordert, ihre ausgefallenen Milchzähne an die Studienausführenden zu senden, dafür bekamen sie einen Anstecker. Schon früh im Laufe der Studie konnten in den Zähnen erhöhte Strontium-90-Werte festgestellt werden; später zeigte die Studie, dass die Milchzähne von Kindern aus dem Jahr 1963 fünfzig Mal mehr Strontium-90 angesammelt hatten als die von Kindern aus den 1950er Jahren. Eine radioaktive Belastung dieser Generation war damit eindeutig nachgewiesen. Die Studie trug dazu bei, die überirdischen Kernwaffentests der USA zu beenden (damit ist Ursula Franklin im Übrigen „Kollegin“ von Katsuko Saruhashi).

Ihre politische Arbeit stand stets im Zeichen feministischen Pazifismus. In den 1980er Jahren nahm sie an einer Kampagne teil, die von der kanadischen Regierung für Kriegsdienstverweigerer das Recht forderte, Einfluss auf die Verwendung der von ihnen gezahlten Steuern zu nehmen – dass diese also nicht für militärische, sondern nur für friedliche Zwecke ausgegeben würden. Die Kampagne wurde leider nicht vom Obersten Gerichtshof angehört und scheiterte. Nachdem sie 1987 emeritierte, schloss sie sich mit einigen anderen weiblichen Fakultätsmitgleidern im Ruhestand zusammen und verklagte die University of Toronto auf Schadensersatz: Die Universität habe sich bereichert, indem sie Frauen mit gleicher Qualifikation wie ihre männlichen Kollegen schlechter bezahlt habe. Im Jahr 2002 erkannte die Universität ihre Schuld an und zahlte an etwa 60 Frauen Ausgleichszahlungen.

Sie blieb auch im akademischen Ruhestand philosophisch und politisch tätig. In einem Artikel On Theology and Peace (Über Theoligie und Frieden) von 1987 schrieb sie: „Frieden ist nicht die Abwesenheit von Krieg, Frieden ist die Abwesenheit von Angst.“ (‚Peace is not the absence of war, peace is the absence of fear‚, Quelle: Wiki Englisch; ein fundamental anderer Ansatz als Ronald Reagans Peace is not the absence of conflict, but the ability to cope with conflict by peaceful means, der vom Konflikt als gegeben ausgeht.) Diese Angst, die den Frieden stört, sei nicht nur Angst vor Krieg und Gewalt, sondern auch die Angst, die durch wirtschaftliche Unsicherheit, Arbeitslosigkeit und drohender Obdachlosigkeit entsteht. Über diese Ängste steuere das, was Franklin als ‚das Bedrohungssytem‘ bezeichnet, die Menschen, indem es gerade wirtschaftliche Unsicherheit und Angst schüre. Frieden, also die Freiheit von Angst, sei laut Franklin allein durch soziale Gerechtigkeit zu erreichen, die Gleichberechtigung/Gleichheit (equality) für alle bringe. Sie deutet an, dass in einer Gesellschaft, die am Konsum orientiert ist, Krieg und Gewalt das unausweichliche Resultat eines raffgierigen Lebensstil seien, der Fürsorge und soziale Gerechtigkeit ablehne.

Nachdem sie 1989 die Massey-Vorträge an der University of Toronto gehalten hatte, veröffentlichte sie 1992 das Buch The Real World of Technology (Link: Goodreads), das auf ihren Vorträgen basierte.

In einem lesenwerten Brief an eine Studentin (PDF zum Download auf Englisch) spricht sie 1993 über die Möglichkeit – und die Dringlichkeit –, als Feministin eine wissenschaftliche Karriere zu verfolgen. Sie führt das Beispiel der Anitbabypille an, deren gesundheitliche ‚Nebenwirkungen‘ verharmlost würden, weil sie Frauen betreffen, und zitiert ihre Kollegin Margaret Benston (Link Englisch): „Als Frauen und als Feministinnen müssen wir anfangen, mit der Wissenschaft und der Technologie umzugehen, die unser Leben und sogar unsere Körper bestimmt. Wir sind die Objekte schlechter Wissenschaft gewesen; jetzt müssen wir die Erschaffer einer neuen sein.“ (übersetzt nach Quelle: Canadian Woman Studies)

Nach den Terroranschlägen am 11. September 2001 unterstrich Ursula Franklin ihre bereits zuvor geäußerte Meinung, dass Krieg und Gewalt nicht nur moralisch falsch sind, sondern auch nicht zielführend, noch dazu unpraktisch und teuer: „Krieg funktioniert nicht, nicht einmal für die Krieger.“ (übersetzt nach Quelle: Wiki Englisch) Gewalt habe in den vergangenen 50 Jahren nichts gelöst. Zum ersten Jahrestag der Anschläge schrieb sie, es wäre hilfreicher gewesen, 9/11 nicht als kriegerischen Akt, sondern als ‚politisches Erdbeben‘ zu betrachten, denn soziale und politische Strukturen seien nun mal so instabil wie geologische. „Geologische Brüche und menschliche Terroristen entstehen in einem Zusammenspiel der Kräfte, die verstanden und – manchmal – gemildert werden können. Beide können nicht durch Bomben verhindert werden.“ (übersetzt nach Quelle: Wiki Englisch) Für ihre Friedensarbeit wurde ihr 2001 die Pearson Medal of Peace verliehen (überreicht: 2002).

2006 kam The Ursula Franklin Reader: Pacifism as a Map heraus, eine Sammlung ihrer Texte, in denen sie sich der Möglichkeit einer friedlichen Gesellschaft nähert, insbesondere beeinflusst von ihrer Überzeugung vom Quäkertum. Im Clip unten spricht sie darüber.

3D Dialogue: Jesse Hirsch im Gespräch mit Ursula Frnaklin über Pacifism as a Map (Englisch)

In einem Text im Reader spricht sie etwa über die Globalisierung, die sie nicht für eine friedliche Lösung hielt, sondern für eine Verlagerung der bestehenden Konflikte in andere gesellschaftliche Bereiche. Das Ende des Kalten Krieges habe gewaltvolle Auseinandersetzungen regional auf kleinere Staaten verlagert, gleichzeitig sei der politische Konflikt durch den wirtschaftlichen Konflikt ersetzt worden. Der neue Feind dieses Konflikt sei jede:r, di_er die Werte der Gemeinschaft schätze über den materiellen Werten: „Was immer nicht ge- oder verkauft werden kann, was immer nicht in Geld oder Gewinn-Verlust-Rechnungen ausgedrückt werden kann, steht dem ‚Markt‘ als Feindesland im Weg und muss besetzt, verändert und bezwungen werden.“ (übersetzt nach Quelle: Wiki Englisch) Wer dagegen Widerstand leisten wolle, müsse sich der Sprache des Besatzers widersetzen und Begriffe wie stakeholder, Nutzer, Gesundheitsdienstleister, Bildungsdienstleister ablehnen, wenn von Lehrenden, Pflegenden, Heilenden die Rede sei. Auch die kreative Nutzung elektronischer Medien sei wichtig, um die Informationskontrolle der Besatzungsmacht zu umgehen.

Im April 2013 spendete Franklin ihre Schriftensammlung von insgesamt 220 Texten, die sich aus westlicher Perpsektive mit der chinesischen Kultur befassten, an das Konfuzius-Institut des Seneca College Toronto. Drei Jahre später, am 22. Juli 2016, starb Ursula Franklin mit 94 Jahren.

So sehr mich die Fülle des englischen Wikipedia-Eintrags zu Ursula Franklin beglückt hat und so begeistert ich von ihren Zitaten und Gedanken war, so schwierig fand ich die zeitliche Einordnung dieser Gedanken – der deutsche Beitrag geht auf ihre Technikphilosophie nur mit einem Satz ein, der englische Beitrag stellt die Inhalte ihrer Philosophie hingegen losgelöst von ihrer Biografie vor. Auch die oben aufgeführten Inhalte zu Pazifismus und Feminismus mehr inhaltlich denn chronologisch gegliedert. Dennoch empfehle ich die Lektüre des englischen Beitrags, weil er recht ausführlich auf ihre Thesen eingeht. Ich hätte ihre Philosophie gerne eingehender vorgestellt, nicht nur, weil sie faszinierende Gedankengänge beinhaltete, sondern auch, weil sie mir aktueller denn je erscheint. Möglicherweise werde ich mir die Übersetzung des englischen Beitrags für die deutsche Wikipedia auf den Zettel schreiben.

*

Ebenfalls diese Woche

17. September 1888: Michiyo Tsujimura (Link Englisch)
Mit ihrer biochemische Analyse des Grünen Tees erlangte die Japanerin als erste Frau ihres Landes einen Doktortitel in Agrarwissenschaft.

19. September 1915: Elizabeth Stern (Link Englisch)
Die kanadische Pathologin lieferte entscheidende Erkenntnisse über die Zusammenhänge von Zelldysplasie und späteren Krebserkrankungen, insbesondere der Gebärmutter. Ihr verdanken wir, dass Gebärmutterkrebs nicht mehr mit SIcherheit tödlich endet, sondern ein Risiko früh erkannt und der Krebs erfolgreich behandelt werden kann. Auch den Einfluss der Hormonmenge in frühen Verhütungspillen erkannte sie.

37/2020: Idelisa Bonnelly, 10. September 1931

Idelisa Bonnelly (Link Englisch) kam in Santiago de los Caballeros, der zweitgrößten Stadt der Dominikanischen Republik, zur Welt. Mit 22 Jahren schrieb sie sich an der Columbia University in New York ein und machte dort drei Jahre später ihre Bachelor of Science in Meeresbiologie. Anschließend studierte sie bis zu ihrem Mastertitel 1961 an der New York University, danach arbeitete sie als Forschungsassistentin am New York Aquarium (Link Englisch). Bereits im Folgejahr kehrte sie in ihre Heimat in der Karibik zurück, um an der Universidad Autónoma de Santo Domingo den ersten Fachbereich ihres Heimatlandes für das Fach Biologie zu gründen.

1966 gründete Idelisa Bonnelly das Institut für Meeresbiologie an der Universität in Santo Domingo, aus dem später das Forschungszentrum für Meeresbiologie (Centro de Investigación de Biología Marina, CIBIMA) hervorgehen sollte. Dort lehrte sie von 1967 bis 1986, im Anschluss war sie weitere sechs Jahre als Studienkoordinatorin dort tätig.

Auch die Akademie der Wissenschaft der Dominikanischen Republik gründete Bonnelly, im Jahr 1974. Sie veröffentlichte zahlreiche Arbeiten, die großen Einfluss auf den Erhalt der Meeresressourcen hatten und zur Grundlage von Umweltrecht hinsichtlich der Küste und des Meeres der Dominikanischen Republik wurden. In den 1980er Jahren war sie entscheidend beteiligt an der Schaffung eines Schutzgebiets für Buckelwale vor der Küste von Hispaniola. Dafür erhielt sie 1986 den Verdienstorden für Frauen in der Wissenschaft von der Regierung der Republik. Im folgenden Jahr wurde ihr der National Science Prize von der Akademie der Wissenschaften verliehen, die UN nahm sie in die Global 500 Roll of Honour des UNEP auf.

Ihre Universität verlieh ihr 1990 die Ehrendoktorwürde. Kurz darauf gründete sie die Dominikanische Stiftung der Meeresforschung (Fundación Dominicana de Estudios Marinos, FUNDEMAR), die auch ein Reservat für Meeressäuger betreibt. Sie schloss sich auch der Organization for Women in Science for the Developing World (TWOWS, Link Englisch) an.

Neben anderen Auszeichungen erhielt sie auch 2009 die Marie Curie Medaille der UNESCO, die BBC nannte sie 2013 eine der zehn wichtigsten weiblichen Wissenschaftlerinnen von Lateinamerika.

Ebenfalls diese Woche

7. September 1830: Mary Treat (Link Englisch)
Die amerikanische Naturkundlerin schrieb in 28 Jahren 76 Artikel zu diversen Themen, von Insektenkunde über Ornithologie bis hin zur Botanik, in der zweiten Hälfte ihres Lebens verdiente sie damit ihren Lebensunterhalt nach der Trennung von ihrem Ehemann. Über fünf Jahre, beginnend 1871, korrespondierte sie mit Charles Darwin über fleischfressende Pflanzen.

10. September 1859: Marcia Keith (Link Englisch)
Von dieser amerikanischen Physikerin wird angenommen, dass sie die individuelle Laborarbeit von Schülern der Naturwissenschaften einführte. Sie unterrichtete Mathematik und Physik und war Gründungsmitglied der American Physical Society.

10. September 1907: Dorothy Hill (Link Englisch)
Die australische Paläontologin war Australiens erste weibliche Universitätsprofessorin und die erste weibliche Präsidentin der Australian Academy of Sciences.

11. September 1845: Mary Anne Stebbing (Link Englisch)
Viele der Zeichnungen dieser botanischen Illustratorin verbrannten 1881, doch einige befinden sich noch im Archiv der Royal Botanic Gardens in Kew.

12. September 1897: Irène Joliot-Curie
Als Tochter der ersten Nobelpreisträgerin überhaupt war sie prädestiniert für große wissenschaftliche Erkenntnisse. Die Chemikerin und Physikerin erhielt 1935 selbst den Nobelpreis in Chemie, gemeinsam mit ihrem Mann Frédéric Joliot-Curie, für die Entdeckung der künstlichen Radioaktivität.

33/2020: Gerty Cori, 15. August 1896

frauenfiguren gerty cori
By National Library of Medicine, Images from the History of Medicine, B05353, Public Domain

Gerty Cori kam in Prag als Gerty Radnitz zur Welt; ihr Vater, Otto Radnitz, war ein Chemiker, der eine Methode zur Raffination von Zucker erfunden hatte und nun eine eigene Zuckerfabrik leitete, ihre Mutter, Martha geborene Neustadt, war eine kulturell interessierte Frau, die mit Franz Kafka befreundet war. Gerty und ihre beiden jüngeren Schwestern erhielten zunächst Privatunterricht, bevor sie mit zehn Jahren auf das Lyzeum gingen.

Mit 16 Jahren wusste Gerty, dass sie Medizin studieren wollte, ihr fehlten bis dahin jedoch noch einige schulische Kenntnisse. Um diese einzuholen, lernte sie innerhalb eines Jahres die Inhalte von acht Schuljahren Latein und fünf Schuljahren Physik, Chemie und Mathematik. So bestand sie mit 18 Jahren die Aufnahmeprüfung für das Medizinstudium an der Deutschen Karl-Ferdinands-Universität Prag.

Im Studium lernte sie Carl Cori kennen. Die beiden verliebten sich und schlossen 1920 gemeinsam – nachdem Carl zwischenzeitlich im Ersten Weltkrieg eingezogen worden war – ihr Medizinstudium ab. Im gleichen Jahr heirateten sie, wofür Gerty vom Judentum zum Katholizismus konvertierte, und zogen nach Wien. Dort arbeitete Gerty als Assistenzärztin im Karolinen-Kinderspital und erforschte die Funktion der Schilddrüse bei der Regulation der Körpertemperatur. Außerdem schrieb sie mehrere Aufsätze zu Blutkrankheiten. Die Lebensumstände nach dem Krieg waren schwierig, oftmals fehlte es an Lebensmitteln, sodass Gerty sogar Augenprobleme entwickelte, die auf einen Vitamin-A-Mangel zurückzuführen waren. Zur gleichen Zeit wurde der Antisemitismus im Land immer offensichtlicher, sodass das Ehepaar Cori 1922 in die USA auswanderte.

Carl fand eine Anstellung beim State Institute for the Study of Malignant Diseases (heute Roswell Park Cancer Institute, Link Englisch), während Gerty zunächst weitere sechs Monate in Wien blieb, weil sie keine Anstellung fand. Sie zog jedoch schließlich nach und arbeitete mit ihrem Mann im Labor, obwohl der Leiter des Insituts sogar drohte, Carl Cori zu entlassen, wenn Gerty nicht aufhörte. Die beiden ließen sich nicht beirren und erforschten gemeinsam, wie Glucose mit Hilfe von Hormonen im menschlichen Körper verstoffwechselt wird. Das Ehepaar veröffentlichte in der Zeit in Roswell insgesamt 50 Aufsätze gemeinsam – wobei die- oder derjenige zuerst als Autor:in genannt wurde, der oder die die meiste Arbeit geleistet hatte – und Gerty Cori veröffentlichte noch elf weitere Schriften als alleinige Autorin.

1928 nahmen die Coris die amerikanische Staatsbürgerschaft an. Im Folgejahr stellten sie ihre Theorie vor, die ihnen schließlich den Nobelpreis einbringen sollte: den Cori-Zyklus. Dieser beschreibt den biochemischen Kreislauf im menschlichen Körper, mit dem Glucose in den Muskeln zu Lactat umgewandelt wird – Glykolyse genannt – , während gleichzeitig Lactat kurzzeitig in der Leber zu Glucose zurückgebildet wird – Gluconeogenese genannt. Diese Erkenntnis, wie die Verwertung von Zucker in den Muskeln funktioniert, sowie der Rolle der Leber dabei war eine wichtige Grundlage für das Verständnis und somit der Behandlung von Diabetes mellitus.

Diese junge Frau erklärt auf dem Kanal FitfürBiochemie den Cori-Zyklus für halbwegs in die Chemie Eingeweihte

Zwei Jahre, nachdem sie diese Theorie veröffentlicht hatten, verließen sie das Insitut in Roswell. Carl wurden mehrere Stellen ohne Gerty angeboten, eine Position in Buffalo lehnte er ab, weil sie ihm durchaus nicht erlauben wollten, mit seiner Frau zu arbeiten. Gerty wurde sogar ausdrücklich vorgeworfen, sie schade der Karriere ihres Mannes, wenn sie weiter mit ihm arbeite. Schließlich ging das Ehepaar Cori gemeinsam an die Washington University in St. Louis, Missouri, wo ihnen beiden Stellungen angeboten worden waren, allerdings in Gertys Fall in einer niedrigeren Position, mit folgerichtig schlechterer Bezahlung: Sie verdiente als Forschungsassistentin nur ein Zehntel von Carls Gehalt. Arthur Compton, zu dieser Zeit Rektor der Universität, machte für die Coris eine Ausnahme von der Nepotismus-Regel, mit der auch Maria Goeppert-Mayer Schwierigkeiten hatte. Bei ihrer gemeinsamen Arbeit an der Washington University entdeckten Gerty und Carl Cori das Glucose-1-phosphat, eine Form von Glucose, das in vielen Stoffwechselvorgängen eine Rolle spielt und auch nach ihnen Cori-Ester heißt. Sie beschrieben seine Struktur, identifizierten das Enzym, das den Cori-Ester katalysiert und bewiesen, dass Glucose-1-phosphat der erste Schritt in der Umwandlung des Kohlehydrats Glykogen zu Glucose ist, welche im Körper als Energie verwertet werden kann.

Gerty Cori erforschte zur gleichen Zeit auch Glykogenspeicherkrankheiten und identifzierte mindestens vier davon, die jeweils mit individuellen Enyzymdefekten zusammenhängen; die verhältnismäßig harmlose Typ III-Glykogen-Speicherkrankheit heißt nach ihr auch Cori-Krankheit. Sie war die erste Person, die nachwies, dass eine vererbte Krankheit mit einem Enzymdefekt zusammenhängen kann.

Nach 13 Jahren an der Washington University wurde Gerty Cori endlich außerordentliche Professorin und vier Jahre später, 1947, auch volle Professorin. Im gleichen Jahr erfuhr sie, dass sie an Myelosklerose litt, und wenige Monate später wurde ihr gemeinsam mit ihrem Mann und dem argentinischen Physiologen Bernardo Alberto Houssay der Nobelpreis für für Physiologie oder Medizin verliehen. Sie war insgesamt erst die dritte Frau mit einem Nobelpreis – Marie Curie und deren Tochter Irène Joliot-Curie waren die ersten beiden, die diesen Preis für Physik respektive Chemie erhalten hatten. Gerty Cori hingegen war nun die erste Frau, die in der Kategorie Physiologie und Medizin ausgezeichnet wurde.

Im Anschluss an diesen Erfolg wurde sie Fellow der American Academy of Arts and Sciences, als viertes weibliches Mitglied in die National Academy of Sciences gewählt sowie von mehreren anderen Societies aufgenommen, von Harry S. Truman wurde sie zum Ratsmitglied der National Science Foundation ernannt. Nachdem sie jahrzentelang gegen den Widerstand von Entscheidern unbeirrt mit ihrem Mann zusammengearbeitet hatte, wurde ihr nun zwischen 1948 und 1955 die Ehrendoktorwürde an fünf Universitäten verliehen – an der Boston University, am Smith College, an der Yale University, an der Columbia University und an der University of Rochester. Insgesamt gewann sie, zum Teil gemeinsam mit ihrem Mann, sechs hochdotierte wissenschaftliche Preise. Sie arbeitete noch weitere zehn mit immer schlechterer Gesundheit, bis sie am 26. Oktober 1957 an der Myelosklerose verstarb.

1998 wurde Gerty Cori in die National Women’s Hall of Fame aufgenommen. Das Labor an der Washington University, in dem sie gearbeitet hatte, wurde 2004 von der American Chemical Society (deren Mitglied sie war) zur Historic Landmark erklärt. Vier Jahre später brachte der US Postal Service eine 41-cent-Briefmarke ihr zu Ehren heraus. Krater auf dem Mond und der Venus sind nach ihr benannt und noch 2015 taufte das US Department of Energy den Hochleistungrechner im Berkeley Lab nach ihr, der als fünfter in der Liste der 500 leistungsfähigsten Computer rangiert.

Die Website des Nobelpreises führt selbstverständlich ihre Biografie (Link Englisch).

*

Ebenfalls diese Woche

12. August 1898: Maria Klenova (Link Englisch)
Als Begründerin der russischen Meeresgeologie erforschte sie beinahe dreißig Jahre lang die Polarregionen und war die erste Frau, die vor Ort in der Antarktis arbeitete.

12. August 1919: Margaret Burbidge
Diese amerikanische Astronomin tauchte bereits im Beitrag über Vera Rubin auf; die erste weibliche Direktorin des Royal Greenwich Observatory forschte zu Quasaren und wie Rubin zur Rotation von Galaxien.

15. August 1892: Kathleen Curtis (Link Englisch)
Die neuseeländische Mykologin begründete die Pflanzenpathologie in ihrer Heimat; ihre Doktorarbeit schrieb sie über Kartoffelkrebs und sie beschrieb 1926 erstmalig einen Bovisten, der endemisch in Tasmanien und Neuseeland auftritt und heute vom Aussterben bedroht ist, den Claustula fischeri (Link Englisch).

32/2020: Mary G. Ross, 9. August 1908

Mary Golda Ross (Link Englisch) kam als zweites von fünf Kindern in Oklahoma zur Welt, als Urgroßenkelin des Cherokee-Chiefs Koo-wi-s-gu-wi John Ross, der sich zunächst dem Druck der US-amerikanischen Regierung zur Umsiedlung der Ureinwohner widersetzte, seine erste Ehefrau auf dem Trail of Tears verlor und später in Oklahoma die Cherokee Nation of Oklahoma mit aufbaute. Da Mary G. Ross begabt war, lebte sie in während ihrer Kindheit bei ihren Großeltern in Tahlequah, der Hauptstadt des Cherokee County, um dort die Grundschule und eine weiterführende Schule zu besuchen. Mit 16 Jahren schrieb sie sich am dortigen Northeastern State Teachers‘ College und machte vier Jahre später ihren Bachelor-Grad in Mathematik. Während der Wirtschaftkrise in den USA Ende der 1920er Jahre unterrichtete sie Mathematik und Naturwissenschaften in Schulen im ländlichen Oklahoma. Mit 28 legte sie eine Prüfung zur Staatsdienerin ab und arbeitete als Statistikerin und als Berufsberaterin an Schulen in New Mexico. In ihrer Zeit als Lehrerin hatte sie nebenher Kurse am Colorado State Teachers‘ College (heute University of Northern Colorado) in Mathematik besucht und „jeden Astronomie-Kurs, den sie hatten“. 1938, mit 30 Jahren, legte sie dort ihre Prüfungen für den Master of Science ab.

Nachdem die USA 1941 in den Zweiten Weltkrieg eingetreten waren, zog Ross auf Anraten ihres Vaters nach Kalifornien, weil dort die Chancen auf (anspruchsvollere) Arbeit besser standen. Tatsächlich wurde die 34-jährige im Folgejahr beim Luft- und Raumfahrtunternehmen Lockheed als Mathematikerin eingestellt. Sie arbeitete hier unter anderem an der Lockheed P-38 Lightning, eines der schnellsten Flugzeuge dieser Zeit. Es konnte im Reiseflug eine Geschwindigkeit von mehr als 640 km/h erreichen, Ross trug zur Lösung einiger Probleme im Hochgeschwindigkeitsflug und an der Aeroelastizität bei.

Mary G. Ross wusste schon damals, dass sie lieber an Raumfahrt-Projekten hätte arbeiten wollen, sprach jedoch nicht darüber, da sie meinte, ihre Glaubwürdigkeit (bei der Arbeit an Luftfahrt-Projekten) wäre hinterfragt worden. Dabei arbeitete Ross oft mit einigen anderen Kollegen bis 23 Uhr an der Forschung, ihre Instrumente dabei waren der Rechenschieber und der Friden-Computer.

Als der Zweite Weltkrieg zu Ende war, entsandte Lockheed Mary G. Ross zur Fortbildung als Ingenieurin, sie studierte erneut, dieses Mal Mathematik für moderne Ingenieurwissenschaft, Aeronautik sowie Raketen- und Himmelsmechanik. So spezialisiert, wurde sie 1952 gebeten, an den so genannten Skunk Works mitzuarbeiten, bei denen im Geheimen von wenigen Mitarbeitern an radikalen Innovationen gearbeitet wurde. In diesem Rahmen war Mary G. Ross an diversen Projekten beteiligt: An vorläufigen Designs für die Raumfahrt, für Orbitalflüge mit und ohne Besatzung, an Studien für Satelliten sowohl für militärische wie auch zivile Nutzung, an der Agena-Rakete sowie an vorläufigen Sondendesigns für Vorbeiflüge an Mars und Venus.

1958 trat sie in What’s My Line auf, der US-Vorlage für Robert Lemkes ‚Was Bin Ich‚. Davon gibt es wunderbarerweise einen Clip bei YouTube.

Mary G. Ross bei What’s My Line

Ende der 1960er Jahre wurde Ross in die Senior-Position befördert und arbeitete an der Mittelstreckenrakete UGM-27 Polaris und deren Nachfolgern. Mit 65 Jahren setzte sie sich 1973 zur Ruhe, setzte sich jedoch weiterhin ehrenamtlich in der Jugendarbeit ein, vor allem, um den Ingenieurberuf für Jugendliche der Amerikanischen Ureinwohner im Allgemeinen und Mädchen im Speziellen. Diese Aufgabe hatte sie bereits in ihrer Funktion als Staatsdienerin übernommen, seit den 1950ern war sie Mitglied der Society of Women Engineers, die ebenso für die Geschlechterparität im Ingenieursberuf aktiv ist.

2004 nahm die inzwischen 96-jährige an den Eröffnungsfeierlichkeiten des National Museum of the American Indian teil, sie trug dafür ihr erstes traditionelles Cherokee-Kleid aus Kaliko, das ihre Nichte für sie geschneidert hatte. Vier Jahre später starb Ross und hinterließ dem Museum $400.000,-, zu diesem Anlass schrieb die Cherokee Phoenix einen anekdotenreichen Nachruf.

Vergangenes Jahr (2019) war Mary G. Ross auf der Rückseite des Sacagawea-Dollar abgebildet, mit dem die Vereinigten Staaten an die Geschichte ihrer Ureinwohner erinnert. Eine Biografie, Einblicke in ihre Arbeit sowie in den Prozess des Münzdesigns bietet dieser Artikel auf der Webseite des National Museum of the American Indian.

*

Ebenfalls diese Woche

4. August 1932: Frances E. Allen
Die Informatikerin und Spezialistin für Compiler erhielt 2006 als erste Frau den Turing Award und war die erste weibliche IBM Fellow.

5. August 1946: Shirley Ann Jackson
Über diese Physikerin schrieb ich 2015.

6. August 1830: Elizabeth Brown (Link Englisch)
Als Quäkerin gleichberechtigt erzogen und gebildet, war die britische Astronomin eine zentrale Figur in der Gründung der British Astronomical Association 1890, die von vorneherein Frauen als Mitglieder zuließ, anders als die Royal Astronomical Society (dort wurde bei gleichem Gründungsjahr erst 1915 die erste Frau als Mitglied gewählt). Sie leitete bis zu ihrem Tod 1899 die Abteilung für Sonnenbeobachtung der Vereinigung.

7. August 1735: Claudine Picardet (Link Englisch)
Universalgelehrte und Übersetzerin wissenschaftlicher Schriften, trug sie im frühen 19. Jahrhundert dazu bei, Paris und Dijon zu Zentren der Wissenschaft zu machen.

7. August 1907: Lucy Cranwell (Link Englisch)
Die neuseeländische Botanikerin leistete Pionierarbeit auf dem Gebiet der Palynologie.

9. August 1861: Dorothea Klumpke
In den USA geborene Tochter deutscher Einwanderer, studierte Klumpke in Paris an der Sorbonne Astronomie. Sie setzte sich bei der Bewerbung um die Leitung für das Carte-du-Ciel-Projekt gegen 50 männliche Konkurrenten durch; sie war auch die erste Frau, die astronomische Beobachtungen (der Leoniden) von einem Ballon aus machte und die erste Frau in Frankreich mit einem Doktorgrad in Mathematik.

Isabelle Stone

* 1868 • † 1944

Isabelle Stone (Link Englisch) kam in Chicago zur Welt, besuchte das Wellesley College in Masschusetts und die Columbia University in New York, ihren Doktortitel in Physik machte sie an der University of Chicago. Zu diesem Zeitpunkt war sie die erste US-amerikanische Frau mit einer Promotion in diesem Fach.

Beim Internationalen Kongress der Physiker in Paris (Datum unbekannt) war sie eine von zwei Frauen unter 836 Besuchern – die andere Frau war Marie Curie. Sie gehörte außerdem zu den Gründungsmitgliedern der American Physical Society.

Isabelle Stone untersuchte den elektrischen Widerstand von dünnen Schichten. In ihrer Doktorarbeit wies sie nach, dass Dünnschichten von Metallen eine höhere elektrische Leitfähigkeit aufweisen als das gleiche Metall in massiven Körpern.

26/2020: Maria Goeppert-Mayer, 28. Juni 1906

Maria Goeppert wurde in Katowice, damals Preußen, in eine Familie von Professoren geboren. Als sie 10 Jahre alt war, zog sie mit ihren Eltern nach Göttingen. Dort besuchte sie eine höhere Schule, die speziell Mädchen für ein Universitätsstudium vorbereiten sollte; mit 17, ein Jahr früher als ihre Komiliton:innen, machte sie als eines von drei oder vier Mädchen das Abitur.

Zunächst studierte sie an der Universität Göttingen Mathematik, zu dieser Zeit um 1924 müsste sie auch Emmy Noether dort angetroffen haben. Nach drei Jahren Studium wechselte Goeppert jedoch zur Physik, in der sie nach weiteren drei Jahren ihre Dissertation über die Theorie der Zwei-Photonen-Absorption schrieb. Diese Theorie, dass ein Molekül oder Atom zur gleichen Zeit (innerhalb von 0,1 Femtosekunde) zwei Photonen aufnehmen kann und dabei in einen energetisch angeregten Zustand übergeht, konnte zu dieser Zeit nicht experimentell nachgewiesen werden. Dieses Ereignis ist extrem unwahrscheinlich: Die Absorption eines Photons in einem Molekül oder Atom geschieht in etwa einmal pro Sekunde unter guten Bedingungen, das heißt bei hoher Lichteinstrahlung. Die gleichzeitige Absorption zweier Photonen tritt hingegen unter den gleichen Bedingungen nur alle 10 Millionen Jahre auf. Erst 1961 konnte Goepperts Theorie dank der Erfindung des Lasers nachgewiesen werden, die Einheit, in der die Wahrscheinlichkeit einer Zwei-Photonen-Absorption gemessen wird, heißt ihr zu Ehren GM (Goeppert-Mayer). Ihre Prüfer im Rigorosum waren Max Born, James Franck und Adolf Windaus, alles drei zu diesem Zeitpunkt oder spätere Nobelpreisträger. Eugene Wigner, ebenfalls Nobelpreisträger, bezeichnete ihre Arbeit später als „Meisterwerk der Klarheit und Greifbarkeit“.

Im gleichen Jahr, in dem sie ihren Doktortitel errang, hatte sie auch Joseph Edward Mayer geheiratet, einen Fellow der Rockefeller Foundation und Assistent von James Franck. Mit ihm zog sie nach ihrer Promotion in die USA, wo Mayer als außerordentlicher Professor an der Johns Hopkins University lehrte. Goeppert-Mayer konnte dort keine Anstellung finden, denn die Hochschule hatte strenge Nepotismus-Regeln, die die gleichzeitige Beschäftigung von Ehepaaren untersagten. Diese waren ursprünglich eingerichtet worden, um Gönnerschaft zu unterbinden, doch inzwischen hielten sie hauptsächlich die Ehefrauen der Professoren von beruflicher Tätigkeit auf dem Campus ab. Goeppert-Mayer konnte sich schließlich gegen sehr kleines Gehalt im Fachbereich für Physik an der deutschen Korrespondenz beteiligen, so hatte sie auch Zugang zu den Laboren. In dieser Zeit arbeitete sie mit Karl Herzfeld an seinen Forschungen zur Quantenmechanik, sie unterrichtete auch unentgeltlich und schrieb eine Arbeit über doppelten Betazerfall. Sie kehrte bis 1933 noch dreimal nach Göttingen zurück, unter anderem um dort mit Max Born an einem Artikel für das Handbuch der Physik zu arbeiten. 1933 verloren Born und James Franck aufgrund der Judenverfolgung unter der faschistischen Regierung Deutschlands ihre Stellen an der Göttinger Universität, James Franck folgte seinem ehemaligen Assistenten nach Baltimore.

1937 wurde Mayer allerdings von der Johns Hopkins Universität entlassen, die Gründe dafür sind unklar. Mayer vermutete Misogynie, nämlich dass der Dekan es nicht gerne sähe, wie frei Mayer seiner Frau Zugang zu den Laboren gewährte. Herzfeld stimmte ihm zu, möglicherweise fühle sich aber auch das amerikanische Kollegium von „zu vielen Deutschen“ (das Ehepaar Goeppert-Mayer, Herzfeld und Franck) überrannt. Es soll auch Beschwerden über die Inhalte des Chemie-Unterrichts gegeben haben, den Goeppert-Mayer hielt: Sie spreche zu viel über moderne Physik. Goeppert-Mayer lehrte noch bis 1939 in Baltimore, dann wechselte das Ehepaar gemeinsam an die Columbia University in New York. Joseph Mayer konnte dort als Professor lehren, Maria Goeppert-Mayer bekam hier zwar ein eigenes Büro, doch für ihre Tätigkeit an der Fakultät wiederum kein Gehalt.

An der Columbia University freundete sich Goeppert-Mayer mit dem Chemiker Harold Urey und dem Physiker Enrico Fermi an und schloss sich deren Forschungen an, zu den Valenzelektronen der bis dahin noch unentdeckten transuranischen Elementen. Die Anzahl der Valenzelektronen, das heißt der Elektronen auf der äußersten Schale eines Elements, die an chemischen Verbindungen beteiligt sein können, bestimmen die Zugehörigkeit zu den unterschiedlichen Gruppen des Periodensystems und lassen Vermutungen über ähnliche chemikalische Eigenschaften zu. Basierend auf dem Thomas-Fermi-Modell, das die Elektronenhülle wie eine Gaswolke interpretiert, stellte Goeppert-Mayer die Voraussage auf, dass die Elemente, die im Periodensystem hinter dem Uran folgen müssten, zur Gruppe der Metalle der Seltenen Erden gehören würden. Diese Voraussage sollte sich als wahr herausstellen.

1941 wurde Maria Goeppert-Mayer zur Fellow der American Physical Society und im Dezember dieses Jahres trat sie ihre erste bezahlte Lehrtätigkeit am Sarah Lawrence College an. Nachdem die USA in den Zweiten Weltkrieg eingetreten waren, schloss sie sich im Folgejahr in Teilzeit dem Manhattan-Projekt an. Ihre Aufgabe wurde es, einen Weg zu finden, das Isotop 235U, einen wichtigen Spaltstoff, in natürlichem Uran auszusondern. Dafür untersuchte Goeppert-Mayer die chemischen und thermodynamischen Eigenschaften von Uranhexafluorid (Uran(VI)-fluorid), einer Verbindung von Uran und Fluor. Sie erwog die Möglichkeit, das gewünschte Isotop mit Hilfe einer photochemischen Reaktion aus dem Stoff auszufällen, doch dies war zu dem Zeitpunkt noch nicht praktikabel; auch hier wurde die Erfindung des Lasers notwendig, um Goeppert-Mayers Theorien in die Praxis umzusetzen.

Ihr Freund Edward Teller holte sie auch kurzzeitig ins Team seines Opacity Project, das die Erschaffung einer Superbombe (Link Englisch) anstrebte. Ihr Mann wurde an die Front im Pazifik berufen, und Goeppert-Mayer beschloss, die beiden Kinder in New York zu lassen und mit Teller in Los Alamo am Project Y zu arbeiten.

Nach dem Ende des Krieges wurde Joseph Mayer Professor für Chemie an der University of Chicago, Maria Goeppert-Mayer wurde von der Hochschule als freiwillige außerordentliche Professorin eingestellt. Teller folgte ihr nach Illinois, um die Entwicklung thermonuklearer Waffen voranzutreiben. Als ihr eine Teilzeitstelle am Argonne National Laboratory angeboten wurde, als leitende Physikerin in der Abteilung für theoretische Physik, antwortete sie erstaunlicherweise: „Ich verstehe nichts von Kernphysik!“ Sie trat die Stelle jedoch an. Außerdem programmierte sie den ENIAC des Aberdeen Proving Ground auf eine bestimmte Vorgehensweise für Schnelle Brüter.

Ihre wichtigeste, erfolgreichste Arbeit leistete Goeppert-Mayer trotz dieser vielseitigen Einsätze in den 1940ern. Während sie an der University of Chicago und dem Argonne angestellt war, entwickelte sie ein mathematisches Modell für den Aufbau des Schalenmodells, das sie 1950 veröffentlichte. Sie erklärte, warum eine bestimmte Anzahl Nukleone (Protonen und Neutronen) in Atomkernen besonders häufig vorkamen und besonders stabil sind. Diese Zahlen nannte Eugene Wigner die ‚Magischen Zahlen‚, die Reihe der „stabilen“ Protonen- und Neutronen-Anzahlen lautet 2, 8, 20, 28, 50, 82 und 126. Das Schalenmodell war für die Elektronen-aufenthaltswahrscheinlichkeitsräume des Atoms bereits erfolgreich, doch vom Atomkern bestand zu diesem Zeitpunkt noch ein anderes Modell, welches jedoch nicht die Inseln der Stabilität in den Elementen erklärte. Im Gespräch mit Enrico Fermi stellte dieser Goeppert-Mayer die Frage, ob es einen Hinweis auf Spin-Bahn-Kopplung gäbe – einen Zusammenhang des Spin, also der Eigendrehung eines Teilchens, und seiner Bahn, also seiner Bewegung innerhalb des Atoms, der sich in der Stärke der Wechselwirkung des Teilchens bemerkbar macht. Diese Kopplung war für Elektronen bekannt, doch angestoßen von Fermis Frage stellte Goeppert-Mayer die Theorie auf, dass dieser Effekt auch im Atomkern wirke und konnte so die Bedeutung der ‚magischen Zahlen‘ in der Kernphysik erklären. Sie erläuterte es kurz und anschaulich wie folgt:

Denken Sie an einen Raum voller Walzertänzer:innen. Nehmen wir an, sie durchtanzen den Raum in Kreisen, jeder Kreis umschlossen von einem weiteren Kreis. Nun stellen Sie sich vor, Sie könnten zweimal so viele Tänzer:innen in einem Kreis unterbringen, indem Sie ein Paar mit und das andere Paar entgegen dem Uhrzeigersinn tanzen lassen. Nun bringen Sie noch weitere Variationen ein; alle Paare drehen sich um sich selbst wie Kreisel, während sie durch den Raum kreisen, jedes Paar dreht sich also um sich selbst (twirling) und durch den Raum (circling). Aber nur einige von denen, die gegen den Uhrzeigersinn durch den Raum tanzen, drehen sich auch im Uhrzeigersinn um sich selbst. Die anderen drehen sich im Uhrzeigersinn um sich selbst, während sie gegen den Uhrzeigersinn durch den Raum tanzen. Das gleiche ist wahr für die, die im Uhrzeigersinn durch den Raum tanzen: Einige drehen sich im Uhrzeigersinn um sich selbst, andere dagegen.

Übersetzt nach dem Abschnitt ‚Nuclear shell modell‘ des englischen Wikipediabeitrags

Zum gleichen Schluss waren zeitgleich die Physiker Otto Haxel, Hans D. Jensen und Hans E. Suess in Hamburg gekommen; Goeppert-Mayers Arbeit wurde zur Prüfung im Februar 1949 eingereicht, die der Hamburger Forscher im erst im April. Als Goeppert-Mayer in Juni 1949 die Ankündigung der Ergebnisse ihrer Kollegen las, versuchte sie noch, ihre Veröffentlichung zu verschieben, damit beide Arbeiten nebeneinander erscheinen könnten, doch dies ließ sich nicht mehr einrichten. So wurde zuerst Goeppert-Mayer als die Entdeckerin des Schalenmodells für den Atomkern bekannt. Es entstand jedoch ein gutes kollegiales Verhältnis zwischen Goeppert-Mayer und Jensen und die beiden brachten 1950 gemeinsam ein Buch zu ihrer Theorie heraus.

In den 1950er Jahren wurde Maria Goeppert-Mayer Mitglied der Heidelberger Akademie der Wissenschaften und der National Academy of Sciences, doch erst 1960 wurde sie endlich vollwertiges Mitglied einer Fakultät, als sie den Lehrstuhl für Physik an der University of California übernahm. Bereits kurz darauf erlitt sie einen Schlaganfall, der sie jedoch nicht von der Arbeit abhalten sollte. 1963 erhielt sie gemeinsam mit Hans D. Jensen eine Hälfte des Nobelpreises für Physik, die andere Hälfte erhielt Eugene Wigner. Goeppert-Mayer war die zweite weibliche Gewinnerin dieses Preises nach Marie Curie, 60 Jahre zuvor. Zu dieser Errungenschaft titelte damals die San Diego Tribune: ‚S.D. Mother Wins Nobel Physics Prize‘ (‚Mutter aus San Diego gewinnt Physik Nobelpreis‘). Hierzu bezog die Nachfolgepublikation The San Diego Union-Tribune im Oktober 2018 Stellung, anlässlich der Verleihung des Nobelpreises für Physik an die dritte Frau überhaupt, Donna Strickland, 55 Jahre nach Goeppert-Mayer.

Zwei Jahre später wurde sie zum Fellow der American Academy of Arts and Sciences. 1971 erlitt sie einen Schlaganfall, in dessen Folge sie ein Jahr lang im Koma lag, bis sie am 20. Februar 1972 verstarb. Die American Physical Society rief 1986 den Maria Goeppert-Mayer Award ins Leben, der jugnen Physikerinnen verliehen wird. Gewinnerinnen müssen einen Doktortitel innehaben, sie erhalten einen Geldbetrag und die Möglichkeit, an vier größeren Institutionen Vorträge über ihre Arbeit zu halten. Auch das Argonne National Laboratory verleiht jedes Jahr im Namen Goeppert-Mayers einen Preis an herausragende Wissenschaftlerinnen, ihre letzte Universität in Kalifornien hält ein jährliches Symposium in ihrem Namen, in dem Wissenschaftlerinnen zusammenkommen. Ein Krater auf der Venus von 35 Kilometer Durchmesser ist nach Maria Goeppert-Mayer benannt.

*

Ebenfalls diese Woche

22. Juni 1939: Ada Yonath
Über diese Chemikerin schrieb ich im Juni 2018.

23. Juni 1871: Jantine Tammes
Die Leidtragende des Matilda-Effektes trug entscheidende Erkenntnisse zur Pflanzengenetik bei, die jedoch ihrem männlichen Kollegen zugeschrieben wurden.

23. Juni 1951: Maria Klawe
Die amerikanische Informatikerin leitet seit 2006 als erste Frau das Harvey Mudd College in Kalifornien.

26. Juni 1862: Ella Church Strobell (Link Englisch)
Gemeinsam mit ihrer Kollegin Katherine Foot trug die Zellbiologin mit Fotografien zum besseren Verständnis der Chromosomen und ihrer Funktion bei.

22/2020: Claudia Alexander, 30. Mai 1959

Claudia Alexander (Link Englisch) kam in Vancouver in Kanada, zur Welt, wuchs jedoch in Santa Clara (Kalifornien), auf. Ihr eigentlicher Berufswunsch war Journalistin, doch ihre Eltern – eine Bibliothekarin und ein Sozialarbeiter – finanzierten das Studium und wollten, dass sie Ingenieurin werde. Sie fügte sich und arbeitete in einem Nebenjob in den Sommerferien im Ames Research Center, einem Forschungscenter der NASA. Dort arbeitete sie in der technischen Abteilung, doch sie begann sich auch für die Planetologie zu interessieren; sie schlich sich also in die wissenschaftliche Abteilung, um dort auszuhelfen, und stellte fest, dass ihr die Arbeit dort besser gefiel und leichter von der Hand ging.

So machte sie 1983 ihren Bachelor-Abschluss an der University of California, Berkeley, in Geophysik, weil sie dieses Fach für eine gute Basis in der Planetologie hielt. Zwei Jahre später machte sie ihren M.A. in Geo- und Astrophysik an der University of California, Los Angeles. In ihrer Abschlussarbeit untersuchte sie die Auswirkungen des magnetischen Zyklus der Sonne und der Sonnenwinde auf die Ionosphäre der Venus. Bis ins Folgejahr 1986 war sie sowohl am United States Geological Survey tätig, in der Erforschung von Plattentektonik, wie am Ames Research Center bei der Beobachtung der Jupitermonde. 1987 wechselte sie zur NASA, wo sie im Labor für Düsenantriebe zunächst als wissenschaftliche Koordinatorin arbeitete.

Sie erlangte 1993 ihren Doktortitel in Atmosphären-, Ozean- und Astro-Wissenschaften (Atmospheric, Oceanic and Space Sciences), speziell zum Thema astrophysisches Plasma (Link Englisch). In der finalen Phase der Galileo-Mission war sie als Projekt Managerin unter anderem für den kontrollierten Absturz der Sonde 2003 in die Atmosphäre des Jupiter verantwortlich. Die Galileo entdeckte 21 neue Jupitermonde und eine Atmosphäre („oberflächengebundene Exosphäre“) auf dem Mond Ganymed.

Neben den Jupitermonden, Plattentektonik, der Venus und dem astrophysischen Plasma forschte sie auch zur Entstehung und dem physikalischen Aufbau von Kometen, Magnetosphären und zur Unstetigkeit und Ausbreitung der Sonnenwinde. Sie war wissenschaftliche Koordinatorin bei der Cassini-Huygens-Mission zum Saturn und Co-Autorin von 14 wissenschaftlichen Schriften. Auch an der Rosetta-Mission der ESA, einer Sonde, die auf dem Kometen Tschurjumow-Gerassimenko landete, war sie als Projektwissenschaftlerin beteiligt.

Claudia Alexander setzte sich auch dafür ein, Frauen und Minderheiten verstärkt in die MINT-Fächer zu bringen – so schrieb sie unter anderem Kinderbücher und Science-Fiction-Romane. In ihrem TED-Talk „The Compelling Nature of Locomotion and the Strange Case of Childhood Education“ demonstrierte sie anhand des Themas der Lokomotion, wie sie wissenschaftlichen Unterricht für Kinder gestaltete.

TED-Talk von Claudia Alexander: „The Compelling Nature of Locomotion and the Strange Case of Childhood Education“

Leider erlag die vielseitige Planetologin am 11. Juli 2015 dem zehnjährigen Kampf gegen den Brustkrebs.

Die zwei Folgen „Ein wachsendes Problem“ (20a) und „Das ausgebrochene Bärtierchen“ (20b) der Kinder-TV-Serie Miles von Morgen sind ihr gewidmet.

*

Ebenfalls diese Woche

26. Mai 1821: Amalie Dietrich
Wenn ich mich recht entsinne, steht die Naturforscherin – zugegebenermaßen eine beeindruckend entschlossene Frau – auch in der Kritik, da sie neben botanischen Exemplaren auch menschliche Schädel aus Australien an Museen in der deutschen Heimat sandte.

27. Mai 1676: Maria Clara Eimmart
Die eigenen Beobachtungen stellte die Astronomin und ausgebildete Kupferstecherin in detaillierten Zeichnungen dar; darunter die Mondphasen sowie verschiedene Ansichten des Merkur, der Venus, des Mars, Jupiter und Saturn, einige Kometenformen und – nebenstehend – das Phänomen des Nebenmondes und der Nebensonne.

27. Mai 1959: Donna Strickland
Die Laserphysikerin erhielt als dritte Frau überhaupt 2018, gemeinsam mit zwei Kollegen, den Nobelpreis für Physik.

31. Mai 1887: Ethel Doidge (Link Englisch)
Die Fellow der Linnean Society of London trug als Mykologin und Bakteriologin zur Bekanntheit eines Phytopathogens bei, das Mangos befällt.

31. Mai 1912: Chien-Shiung Wu
Dafür, dass sie 1956 im Wu-Experiment die Paritätsverletzung bei schwacher Wechselwirkung nachwies und damit empirisch eine Hypothese bewies, dass in der Elementarteilchenphysik eine Vertauschung von rechts und links einen Unterschied machen kann – dafür hätte die Physikerin ebenfalls den Nobelpreis für Physik erhalten müssen; sie wurde dafür jedoch gar nicht erst nominiert. Sie erhielt jedoch 1963 den Comstock-Preis für Physik, 1975 die National Medal of Science und 1978 den Wolf-Preis in Physik.

18/2020: Marietta Blau, 29. April 1894

Die in Wien geborene Marietta Blau machte 1914 ihre Matura und studierte anschließend Physik und Mathematik an der Universität Wien. 1919 promovierte sie mit einer Dissertation „Über die Absorption divergenter γ-Strahlung“. Da sie in Wien keine Beschäftigung fand, ging sie zunächst nach Deutschland. Sie arbeitete bis 1921 in einer Röntgenröhren-Fabrik in Berlin, anschließend unterrichtete sie angehende Ärzte in Röntgenphysik am Institut für physikalische Grundlagen der Medizin an der Universität Frankfurt. Als 1923 ihre Mutter in Wien erkrankte, kehrte Blau nach Wien zurück. Bei ihrer Familie versorgt, forschte sie unbezahlt als wissenschaftliche Mitarbeiterin am Institut für Radiumforschung der Österreichischen Akademie der Wissenschaften. In den Jahren 1932 und 1933 konnte sie dank eines Stipendiums des Verbandes der Akademikerinnen Österreichs Forschungsaufenthalte in Göttingen und Paris absolvieren.

In ihrer Zeit in Wien arbeitete Marietta Blau mit Hertha Wambacher an einer Methode, atomare Teilchen photographisch sichtbar zu machen. Für Photographien wurden zu dieser Zeit Platten aus Glas oder Metall mit einer Emulsion aus Gelatine und lichtempfindlichen Silberverbindungen bestrichen, Blau und Wambacher entwickelten für ihre Forschungen eine spezielle Kernemulsion, mit der insbesondere Alphateilchen und Protonen durch Bestrahlung der Platten nachgewiesen werden konnten sowie anhand der Bahnspuren in der Emulsion erkennbar wurde, wohin ihre Energie gerichtet war. Für diese Arbeit erhielten die beiden Physikerinnen 1936 den Haitinger-Preis und 1937 den Lieben-Preis der Akademie.

Die Aufsehen erregendste Entdeckung der beiden waren die sternförmig verlaufenden Teilchenbahnspuren auf Photoplatten, die sie auf 2.300 Meter über Normalnull installiert hatten. Diese so genannten Zerstrümmerungssterne wiesen auf Kernreaktionen in der Photoemulsion hin, die mit Teilen der kosmischen Strahlung stattgefunden haben mussten.

Während ihre Kollegin Wambacher bereits seit 1934 Mitglied der NSDAP war, bedeutete der Anschluss Österreichs 1939 für die Jüdin Blau ein Ende ihrer Karriere im Land. Sie sah sich gezwungen, das Land zu verlassen, zunächst in Richtung Schweden, wo sie in Oslo mit Ellen Gleditsch am Chemischen Institut arbeitete. Zu Beginn des Zweiten Weltkriegs 1939 verhalf ihr jedoch die Vermittlung Albert Einsteins zu einer Anstellung an der Technischen Hochschule in Mexiko-Stadt. Da die Bedingungen dort jedoch auch nicht optimal waren, wechselte sie schließlich 1944 in die USA, wo sie zunächst vier Jahre lang in der Industrie tätig war, anschließend in diversen wissenschaftlichen Einrichtungen. Währenddessen setzten andere, die nicht politisch verfolgt wurden, ihre Forschungen in Wien fort und veröffentlichten darauf aufbauende Publikationen, in denen Marietta Blau mit keinem Wort erwähnt wurde. Ebensowenig wies Cecil Powell auf Wambacher und Blau hin, als er 1950 den Nobelpreis für Physik erhielt, obwohl seine Forschungen von den Entdeckungen der beiden Physikerinnen angestoßen worden waren – ein weiteres Beispiel für den Matilda-Effekt. Tatsächlich hatte Erwin Schrödinger eigentlich die beiden Frauen für den Preis vorgeschlagen.

1960 kehrte Marietta Blau nach Österreich zurück und arbeitete bis 1964 am Institut für Radiumforschung, sie leitete hier – wiederum unbezahlt – Arbeitsgruppe zur Analyse von photographischen Aufnahmen von Teilchenbahnspuren des CERN und betreute auch eine Dissertation dazu. Zwei Jahre vor ihrer Pesnionierung erhielt sie noch den Erwin-Schrödinger-Preis der Österreichischen Akademie der Wissenschaften, doch für eine Aufnahme in die Akademie reichte es nicht.

1970 trug die jahrelange ungeschützte Arbeit mit radioaktivem Material sowie ihr Zigarettenkonsum Rechnung, sie starb völlig verarmt und so gut wie unbemerkt in ihrer Geburtsstadt an Krebs. Erst 2004 widmete ihre ehemalige Schule ihr eine Gedenktafel, im Folgejahr wurde ein Saal im Hauptgebäude der Universität Wien nach ihr benannt.

*

Ebenfalls diese Woche

28. April 1854: Hertha Ayrton
Über diese Mathematikerin und Elektroingenieurin schrieb ich 2017, als ich mich mit Frauen im 19. Jahrhundert befasste.

11/2020: Lady Hester Stanhope, 12. März 1776

frauenfiguren lady hester stanhope
Lady Hester Stanhope on horseback from her memoirs, as related by herself in conversations with her physician [C.L. Meryon]; comprising her opinions and anecdotes of some of the most remarkable persons of her time Rare Books Keywords: Hester Lucy Stanhope By Wellcomeimages.org Gallery: Wellcome Collection gallery (2018-03-30): CC-BY-4.0, CC BY 4.0

Lady Hester Stanhope kam als ältestes Kind des 3. Earl of Stanhope, Charles Stanhope, und seiner ersten Frau, der Viscountess Lady Hester Pitt (Link Englisch), in England auf die Welt. Ihre leibliche Mutter bekam noch zwei Töchter, doch nach der Geburt des dritten Kindes starb Hester Stanhope 24-jährig an einem Fieber. Im Jahr darauf heiratete Charles Stanhope Louisa Grenville (Link Englisch), die Cousine seiner ersten Frau, die in den folgenden Jahren drei Söhne gebar.

Mit 14 wurde sie ans andere Ende des Landes (von Kent nach Somerset) geschickt, um bei ihrer Großmutter mütterlicherseits Hester Pitt, Countess of Catham, zu leben. Drei Jahre später zog sie zu ihrem Onkel mütterlicherseits, William Pitt der Jüngere. Für ihn war sie als Haushaltsvorsteherin und Gastgeberin tätig, da er als Premierminister soziale Verpflichtungen hatte, aber keine Ehefrau, die diese übernehmen konnte. In dieser Funktion wurde sie für ihre Schönheit ebenso wie für ihre Konversationsführung gerühmt. Nachdem William Pitt von seinem Amt als Premierminister zurückgetreten war, diente Lady Hester im noch bis zu seinem Tod (am Durchbruch eines Magengeschwürs) als Privatsekretärin.

Die englische Regierung gestand ihr als Hinterbliebene des ehemaligen Premierministers eine Pension von jährlich 1.200£ zu. Sie verblieb nach dem Tode Pitts 1806 noch einige Zeit in London und zog dann nach Wales. 1809 starb bei der Schlacht bei La Coruña wohl nicht nur ihr Halbbruder, sondern auch John Moore, mit dem sie möglicherweise Heiratspläne gehabt hatte. (Dies entnehme ich dem englischen Wikipedia-Beitrag über Lady Hester Stanhope, den ich aus diversen Gründen lieber als den deutschen empfehlen möchte.) Dieser soll jedenfalls in seinen letzten Momenten zu Charles Banks Stanhope gesagt haben, er möge seine Schwester an ihn erinnern.

So schiffte sich Lady Hester Stanhope 1810, in Begleitung ihrer Zofe, ihres Leibarztes Charles Lewis Meryon, der ihre Memoiren schrieb, und des Abenteurers Michael Bruce (Link Englisch), der ihr Liebhaber wurde, in Richtung Athen ein. In Athen soll Lord Byron ins Meer gesprungen sein, um ihr entgegenzuschwimmen. Von dort reiste die Gruppe nach Konstantinopel und wollte weiter nach Kairo, das sich inzwischen von NapoleonsÄgyptischer Expidition“ erholt hatte. Doch auf dem Weg dorthin geriet ihr Schiff in einen Sturm und kenterte, die Schiffbrüchigen wurden auf der damals osmanischen Insel Rhodos angespült. Da ihr Hab und Gut im Mittelmeer versunken war, mussten sich die Reisenden Kleidung leihen. Lady Hester Stanhope weigerte sich, den Schleier einer osmanischen Frau anzulegen, und wählte stattdessen die Bekleidung eines Mannes, mit Turban, Kaftan und Pantoffeln. Auf der Weiterreise auf einer britischen Fregatte erstand sie die gesamte Ausstattung eines orientalischen Mannes: Einen samtenen Kaftan, eine bestickte Hose, Weste und Jacke, einen Sattel und einen Säbel. So ausstaffiert, schaffte sie es in Kairo bis vor den Pascha. In folgenden zwei Jahren bereiste sie – stets als Mann gekleidet – durch den Mittleren Osten.

Eine Wahrsagerin sagte ihr, dass sie dazu geboren sei, der neue Messias zu werden, daraufhin trat sie mit einem Heiratsangebot an den Imam der Wahhabiten, Saud I. ibn Abd al-Aziz, heran. Nachdem er abgelehnt hatte, beschloss sie, als erste westliche Frau Palmyra zu betreten, und setzte diesen Plan auch in die Tat um, trotz der feindlich gestimmten Beduinen, die in der Wüste um die Oasenstadt herrschten. Sie kleidete sich wie einer von ihnen und reiste mit 22 Kamelen an, vom Emir Mahannah el Fadel (Link Englisch) wurde sie als Königin Hester empfangen.

Zu einem unbestimmten Zeitpunkt kam Stanhope in den Besitz eines mittelalterlichen italienischen Manuskriptes, aus dem Fundus eines alten Klosters in Syrien. Demzufolge solle sich unter den Ruinen einer Moschee in Aschkelon ein großer Schatz befinden, der dort seit 600 Jahren verborgen läge. 1815 überzeugte Stanhope die ottomanische Verwaltung davon, sie dort nachforschen zu lassen, der Gouverneur von Jaffa, Muhammad Abu Nabbat (Link Englisch), wurde zu ihrer Begleitung abgestellt. Dies sollte die erste archäologische Ausgrabung in Palästina werden, was Lady Hester Stanhope zu einer Pionierin auf diesem Gebiet machte. Nach Meryons Aufzeichnungen hielten sie dabei auch stratigrafische Erkenntnisse fest, eine für die Zeit ungewöhnliche Vorgehensweise, wurden doch andernorts nur die Menge und der Reichtum einzelner Funde und nicht ihre Verortung in einer Chronologie festgehalten und ausgelobt.

Statt eines reichen Goldschatzes fand Stanhope jedoch eine zwei Meter hohe, kopflose Marmorstatue, wohl aus der grecoromanischen Zeit. Aus politischen Gründen ließ Stanhope diese Statue in tausend Stücke zerschlagen und im Mittelmeer versenken: Sie wollte dem ottomanischen Sultan damit beweisen, dass sie diese Ausgrabung nicht getätigt hatte, um ihrem Heimatland archäolgische Funde zukommen zu lassen. Gefundenes Gold hätte sie dem Sultan als ihm zustehenden Schatz ausgeliefert. Auch wenn sie bei der Ausgrabung methodisch vorging und der Fund der Statue detailliert dokumentiert wurde, zerstörte sie doch ein historisches Relikt, welches ihr Biograf Meryon für das Abbild eines vergöttlichten Königs, möglicherweise gar Alexander des Großen oder Herodes‚, hielt. Strategisch umsichtig, wissenschaftlich jedoch schwer verzeihlich. Nichtsdestotrotz gilt Lady Hester Stanhope mit dieser Ausgrabung den Weg bereiten für weitere archäologische Forschungen im Heiligen Land.

Anschließend ließ sich Stanhope im Gebiet des heutigen Libanon nieder, zunächst in einem alten Kloster in der Nähe von Jezzine. Für einige Zeit lebten ihre Zofe und ihr Leibarzt Meryon dort mit ihr, doch ihre Zofe starb 1828, drei Jahre später verließ Meryon sie und kehrte nur einmal für ein Jahr zurück. Als er ihr zum zweiten und letzten Mal den Rücken kehrte, zog sie in ein anderes verfallenes Kloster in der Nähe von Joun (Link Englisch), das sie für seine günstige Lage auf einem Hügel schätzte, von welchem aus sie herannahende Fremde von allen Seiten früzeitig entdecken konnte. Ihre Residenz wurde bei den Dorfbewohnern bekannt als Deir el-Sitt (Brunnen der Herrin). Der im Gebiet herrschende Emir Bashir Shihab II (Link Englisch) begrüßte ihre Anwesenheit zunächst, doch mit den Jahren erlangte Stanhope in der Region um ihre Residenz eine Form der Herrschaft, die ihm durchaus unbequem war, außerdem mischte sie sich in die Uneinigkeiten zwischen den Drusenklans untereinander und dem ottomanischen Reich ein, indem sie einigen Gruppierungen in ihrer Residenz Zuflucht gewährte. Ihr Einfluss in dem Gebiet war soagr so groß, dass Ibrahim Pascha, ein osmanisch-ägyptischer General, sie um Neutralität ersuchte, als er in Syrien einmarschierte.

Lady Hester Stanhope war wohl nicht nur eine charismatische Person, die Menschen glaubten auch, sie könne die Zukunft vorhersagen; sie stand in schriftlichem Kontakt mit zahlreichen einflussreichen Persönlichkeiten und die Menschen in ihrer britischen Heimat verfolgten Berichte und Erzählungen von ihr mit Spannung. Schließlich häufte sie jedoch Schulden an, die sie versuchte mit ihrer Pension der englischen Regierung abzubezahlen. Nach und nach zog sie sich von der Öffentlichkeit zurück, ihre Bediensteten bestohlen und verließen sie; sie litt höchstwahrscheinlich an Depressionen und verlor den Überblick über ihren Haushalt. Möglicherweise wurde sie auch sehr früh senil. In jedem Fall empfing sie Besucher am Ende ihres Lebens nur noch in der Dunkelheit und ließ sie auch dann nur ihre Hände und ihr Gesicht unter einem Turban auf dem rasierten Kopf sehen. 1839 starb sie allein und verarmt. Als der englische Konsul anlässlich der Nachricht ihres Todes aus Beirut nach Deir el-Sitt kam, soll er sie nackt bis auf ihren Schmuck vorgefunden und unter Maulbeer-Feigen beerdigt haben.

Es lohnt sich in ihrem Fall, die Beiträge der englischen und der deutschen Wikipedia zu vergleichen. Die Perspektive auf diese ungewöhnliche Frau könnte unterschiedlicher nicht sein, in der Schilderung (und Auslassung) der entscheidenden Punkte ihres Lebens und in der augenfälligen Wortwahl.

Zu ihrem 240. Geburtstag sendete der WDR einen 15-minütigen Beitrag über die Abenteurerin (verfügbar bis 10.03.2026).

*

Ebenfalls diese Woche

9. März 1903: Hertha Wambacher
Die österreichische Physikerin entdeckte gemeinsam mit ihrer Kollegin Marietta Blau „Zertrümmerungssterne“ auf Photoplatten, die auf 2.300m Seehöhe kosmischer Strahlung ausgesetzt waren, sternförmige Teilchenbahnspuren von Kernreaktionen, wenn Teile der kosmischen Strahlung auf die photografische Emulsion trafen.
Während ihre jüdische Kollegin Blau wegen des Anschlusses Österreichs 1938 nach Oslo auswandern musste, was einen tiefen Schnitt für ihre wissenschaftliche Karriere bedeutete, war Wambacher seit 1934 Mitglied der NSDAP.

4/2020: Gertrude B. Elion, 23. Januar 1918

Die Eltern von Gertrude B. Elion waren als Kinder in die USA eingewandert, ihre Mutter aus Polen, ihr Vater stammte aus einer jüdischen Familie in Litauen. Er war Zahnarzt in New York, verlor jedoch sein gesamtes Vermögen am Schwarzen Donnerstag, den 24. Oktober 1929 (dazu gehört in der Folge auch der Schwarze Dienstag, der 29.Oktober; dass dieses Ereignis in Deutschland als Schwarzer Freitag bekannt ist, liegt daran, dass durch die Zeitverschiebung der Absturz des Börsenkurses in unseren Breiten in den frühen Morgenstunden des Freitag stattfand). Doch da Getrude hervorragende Noten hatte, konnte sie ohne Studiengebühren am Hunter College Chemie studieren. Sie hatte bereits mit 15 beschlossen, in der Krebsforschung zu arbeiten, nachdem ihr Großvater an Krebs gestorben war. 1937, mit 19 Jahren, machte sie als einzige Frau vor 1939 ihren Bachelor an der New Yorker Universität. Da sie keine Anstellung als Chemikerin fand, schloss sie ein Studium zum Master of Sciences an, während sie tagsüber als High-School-Lehrerin arbeitete. Später äußerte sie die Vermutung, dass sie als junges Mädchen überhaupt nur eine Hochschulbildung genießen konnte, weil sie dank guter Noten umsonst studieren konnte – sie bewarb sich fünfzehn Male um finanzielle Unterstützung, doch alle wurden aufgrund ihres Geschlechtes abgelehnt. Sie hatte sich bereits in einer Schule für Sekretärinen eingeschrieben und diese sechs Wochen besucht, bevor sie eine bezahlte Stelle fand. (Quelle: Wikipedia) 1941 machte sie ihren Abschluss als M.Sc., im gleichen Jahr verlor sie ihren Verlobten durch eine bakterielle Endokarditis, eine Herzentzündung. Nach eigener Aussage verstärkte dies ihren Wunsch, Pharmakologin zu werden.

Da sie keine Arbeit in der akademischen Forschung fand, arbeitete sie zunächst in der Lebensmittelforschung, namentlich bei der Supermarktkette A&P; dort prüfte sie als Qualitätsmanager den Säuregehalt der Gurken und Eidotter, die in Mayonaise verarbeitet wurden. Erst drei Jahre später, 1944, konnte sie bei Burroughs Wellcome & Company (heute GlaxoSmithKline) als Laborassistentin tätig werden. Sie arbeitete hier mit dem Biochemiker George Herbert Hitchings zusammen an „rationaler Wirkstoffplanung“: Statt sich auf trial & error zu verlassen, also zu experimentieren und aus den gescheiterten Experimenten zu lernen, untersuchte das Team aus Hitchings, Elion und James W. Black die Unterschiede zwischen menschlichen Zellen und Krankheitserregern, um von vorneherein Wirkstoffe herzustellen, die nur die Erreger zerstörten und nicht gesundes menschliches Gewebe angriffen.

In ihrer Zeit bei Burroughs Wellcome & Company, zwischen 1944 und 1983, war sie an der Entwicklung diverser Medikamente beteiltigt, etwa Zytostatika zur Behandlung von Leukämie, einem Mittel zur Behandlung von Malaria, und dem ersten Immunsuppressivum, das nach Organtransplantationen zum Einsatz kommt. Besonders hervorzuheben unter Elions Forschungsergebnissen ist jedoch Aciclovir, das bei Infektionen mit Viren der Art Herpes Simplex gegeben wird. Nachdem sie sich bereits als Mitarbeiterin von inzwischen GlaxoSmithKline zur Ruhe gesetzt hatte, war sie auch an der Weiterentwicklung von AZT (Zidovudin) beteiligt, das erste Medikament, das zur Behandlung von AIDS eingesetzt wurde und noch heute zur antiretroviralen Therapie bei HIV1-infizierten Patienten gehört.

1967 wurde sie zur Leiterin der Abteilung für Experimentelle Therapie bei GlaxoSmithKline. Sie machte auch erste Schritte hin zu einem Doktortitel, doch war ihr die praktische Forschung im Unternehmen wichtiger als der akademische Grad, und so promivierte sie nie. Nachdem sie jedoch 1988 gemeinsam mit Hitchings den Nobelpreis für Physiologie und Medizin (für die „Entdeckung zu wichtigen biochemischen Prinzipien der Arzneimitteltherapie“) erhalten hatte, verlieh ihr die Polytechnic University of New York 1989 die Ehrendoktorwürde, neun Jahre später folgte auch die Harvard University.

Die Liste ihrer Auszeichnungen ist lang. Im direkten Anschluss an ihre Pensionierung war sie Präsidentin der American Association for Cancer Research, und im beruflichen Ruhestand forschte sie weiter nach Mitteln gegen HIV und AIDS. Sie war die fünfte weibliche Nobelpreisträgerin für Medizin und die neunte weibliche überhaupt. Sie wurde in den Jahren 1990 und 1991 zum Mitglied der National Academy of Sciences, der National Academy of Medicine und der American Academy of Arts and Sciences, erhielt (unter anderem) die US-amerikanische National Medal of Science und wurde in die National Inventors Hall of Fame und die National Women’s Hall of Fame aufgenommen.

1999 starb sie im Alter von 91 Jahren.

*

Ebenfalls diese Woche

21. Januar 1714: Anna Morandi Manzolini
Ihre ersten zwanzig Wachsmodelle von menschlichen Organen waren die unterschiedlichen Ausbildungen des Uterus während einer Schwangerschaft. Manzolini wurde weltbekannt für ihre exakten Wachsnachbildungen menschlicher Anatomie, später lehrte sie auch als Honorarprofessorin an der Universität Bologna.

22. Januar 1909: Tikvah Alper (Link Englisch)
Die südafrikanische Physikerin studierte 1930-1932 bei Lise Meitner. Sie entdeckte, dass der Scrapie-Erreger, bei uns auch Traberkrankheit, keine Nukleinsäuren enthält und sich nicht durch Strahlung vernichten lässt. Die Schlussfolgerung, dass es sich nicht um einen Virus handeln konnte, führte zur Entwicklung der Prionentheorie.

24. Januar 1904: Berta Karlik
Die österreichische Physikerin wies in den 1940er Jahren die drei Isotope 215, 216 und 218 des Elementes Astat nach.

26. Januar 1839: Rachel Lloyd
1886 war sie die erste Amerikanerin, die einen Doktortitel in Chemie erhielt – an der Universität Zürich – und die zweite Frau in diesem Gebiet überhaupt nach Julia Lermontowa.