Warning: call_user_func_array() expects parameter 1 to be a valid callback, function 'enqueuefront' not found or invalid function name in /www/htdocs/w018231e/frauenfiguren.de/wp-includes/class-wp-hook.php on line 287

Schlagwort: nobelpreisträgerin

53/2020: Yvonne Brill, 30. Dezember 1924

Yvonne Brill kam als Tochter der Claeys, belgischer Immigranten in Winnipeg, Kanada, zur Welt. Entgegen dem Wunsch ihres Vaters, dass sie einen Laden in Winnipeg eröffnen sollte, und der Meinung eines Lehrers, dass Frauen es in der Wissenschaft nicht weit bringen würden, bgeann sie ein Studium an der University of Manitoba. Da sie aufgrund ihres Geschlechtes vom Studium der Ingenieurswissenschaften ausgeschlossen war, studierte sie Chemie und Mathematik. An der University of Manitoba machte sie mit 21 Jahren als Jahrgangsbeste ihren BSc. Danach war sie bei der Douglas Aircraft Company auf dem Gebiet der Treibstoffentwicklung tätig; gleichzeitig setzte sie ihr Studium der Chemie an der University of Southern California fort, wo sie sechs Jahre später, 1951, ihren MSc abschloss. Im gleichen Jahr heiratete sie den US-Amerikaner William Brill und nahm die US-amerikanische Staatsbürgerschaft an. Sie arbeitete bei der RCA im Bereich der Raumfahrtelektronik. Gegen Ende der 1950er unterbrach sie während der ersten Schwangerschaft ihre aktive Arbeit und blieb in den nächsten Jahren, als Mutter dreier Kinder, in rein beratender Funktion. 1966 kehrte sie in den aktiven Dienst zurück, gleich im Folgejahr entwickelte sie den Hydrazin-Resistojet, einen Antrieb für Raumfahrtvehikel, der auch die Restwärme des verbrannten Treibstoffes als Antriebsenergie verwendet. Damit konnte die Effizienz des Gefährtes um 30% erhöht werden, um entweder mehr Nutzlast zu transportieren oder den Einsatz entsprechend zu verlängern. Brill hält das Patent auf diesen Antrieb, der unter anderem für den ersten Wettersatelliten verwendet wurde, für die Nova-Raketen bei der ersten Mondmission und für die Sonde Mars Observer, die 1993 kurz vor Eintritt in die Marsatmosphäre verloren ging.

Yvonne Brill erhielt ihm späteren Verlauf ihrer Karriere zahlreiche Auszeichnungen; unter anderem 1980 den Diamond Superwoman Award, ausgeschrieben von Harper’s Bazaar und De Beers – für fünf Frauen über 40, die ihre berufliche Tätigkeit für die Familie unterbrochen und anschließend wieder aufgenommen hatten, um dann höchst erfolgreich zu sein. Der Preis war ein Diamant von 1 Karat.

2001 erhielt Brill die NASA Distinguished Public Service Medal (Link Englisch), 2010 überreichte ihr Barack Obama die National Medal of Technology and Innovation und sie wurde in die National Inventors Hall of Fame aufgenommen.

Sie starb am 27. März 2013 mit 88 Jahren. Ihr Nachruf in der New York Times begann ursprünglich mit einem Lob ihrer Kochkünste, dass sie ihrem Mann bei beruflichen Wechseln gefolgt sei und dass sie drei Kinder großgezogen hatte. Der Artikel gilt damit als ein Beispiel, wie Artikel über Wissenschaftler:innen beim Finkelbeiner Test (Link Englisch) durchfallen. Dieser Test soll an sich verhindern, dass beim Schreiben über Wissenschaftler:innen ihr Geschlecht besonders hervorgehoben wird, um weibliche Wissenschaftlerinnen zu normalisieren. Während ich die Intention voll und ganz unterstütze, falle ich mit diesem Blog dieses Jahr mit jedem Beitrag durch – weil ich glaube, dass es gleichzeitig wichtig ist, darauf hinzuweisen, dass eben nicht alle von der gleichen Position in der Wissenschaft starten, sondern manche Menschen aufgrund von Geschlecht und ethnischem oder geografischem Hintergrund auf größere Widerstände stoßen. Und dass das Überwinden dieser Hindernisse eine weitere erwähnenswerte Errungenschaft dieser Menschen ist. Was auch ich versucht habe zu vermeiden ist ein Fokus auf das, was Wissenschaftlerinnen als Privatpersonen, insbesondere Ehefrauen und Mütter, erlebt haben, es sei denn, es hatte Einfluss auf ihre Arbeit oder Karriere.

Damit verabschiedet frauenfiguren sich von dem Thema Wissenschaft, zumindest als alleinigem Leitfaden, und von 2020. Es war ein schwieriges Jahr, aber ich durfte viele neue Abonnent:innen begrüßen (und einige auch wieder verabschieden, aber win some, lose some, right?). Ich hoffe, die meisten von Euch bleiben mir im kommenden Jahr des intersektionalen Feminismus gewogen, erzählen vielleicht sogar Freund:innen, Familienmitgliedern und Kolleg:innen von mir… denn wenn’s nach mir geht, macht frauenfiguren noch sehr lange weiter.

*

Ebenfalls diese Woche

29. Dezember 1704: Martha Daniell Logan (Link Englisch)
Als Laienbotanikerin war sie eine wichtige Figur im Austausch von Pflanzensamen zwischen den Vereinigten Staaten und Großbritannien.

30. Dezember 1930: Tu Youyou
Die chinesische Pharmakologin gewann 2015 den Nobelpreis für Physiologie oder Medizin, nachdem sie Artemisinin aus dem Einjährigen Beifuß isoliert hatte, der im Kampf gegen Malaria eingesetzt wird.

WEG MIT
§219a!

Matilda und die verschwundenen Frauen

Dieser Text ist als Beitrag zur Blogparade der Münchner Stadtbibliothek entstanden, in der es um Frauen und Erinnerungskultur geht. Während die Frage eigentlich in die Richtung der Literatur- und Kunst-Blogger:innen ging, trieb mich in diesem Jahr eben besonders dieser Begriff um, der wie die Hand in die Stulpe passt. Nur wenige Tage zuvor hat auch Melanie Jahreis über die scheinbar fehlenden Forscherinnen und Erfinderinnen geschrieben!

Wenn im Weiteren von Frauen und Wissenschaftlerinnen gesprochen wird, möchte ich voranstellen, dass Gage und Rossiter ihren Blick auf Frauen allgemein richten, wir aber natürlich alle wissen, dass der Effekt zwar für weiße Frauen ein Problem ist, Womxn of Colour aber in der Intersektion von Sexismus und Rassismus wesentlich härter getroffen werden. Sie tauchten sozusagen noch gar nicht am Platz auf, als weiße Frauen immerhin schon auf der Ersatzbank sitzen durften.

„Keine Aussage über die Frau ist gebräuchlicher, als dass sie keinen erfinderischen oder mechanischen Schöpfergeist habe“, schreibt Matilda Joslyn Gage 1870 in ihrem Essay Woman as Inventor. Die amerikanische Suffragette, die sich auch für die Abschaffung der Sklaverei und die Rechte amerikanischer Ureinwohner einsetzte, schlägt in ihrem Text den Bogen von den schöpferischen Gottheiten Ägyptens – Isis – und Griechenlands – Pallas Athene und Ceres – zu Leizu, die in China als die Erfinderin der Serikultur verehrt wird, und weiter zu zahlreichen Patenten der Neuzeit, die auf Ideen von Frauen zurückgehen. Sie nennt klarsichtig die Gründe, warum Namen von Frauen seltener auf Patenten erscheinen und warum Erfinderinnen der Allgemeinheit meist weniger bekannt sind: „Während, wie aufgezeigt wurde, viele der wichtigsten Erfindungen der Welt der Frau zu verdanken sind, ist der Anteil der weiblichen Erfinderinnen viel kleiner als der männlichen, welches aus der Tatsache entsteht, dass die Frau nicht die gleiche Fülle an Freiheit besitzt wie der Mann. Eingeschränkt in Bildung, gewerblichen Chancen und politischer Macht, ist dies eines der vielen Beispiele, bei denen sich ihre Herabwürdigung schädlich auf die ganze menschliche Rasse auswirkt. […] Der politischen Macht entzogen, wie die Frau ist, sieht sie sich der Verachtung für ihr Geschlecht, offener und verborgener Verachtung der Weiblichkeit, herablassender Anspielungen über ihre intellektuellen Fähigkeiten gegenüber – alles dient dazu, den Ausdruck ihres erfinderischen Schöpfergeistes zu verhindern.“ So sind die Patente für Erfindungen von Frauen oftmals im Namen ihres Ehemannes als ‚Eigentümer‘ oder Vormunde der Frauen eingetragen – denn als Eigentümer der Frauen sind sie auch Eigentümer derer geistigen Produkte.

frauenfiguren matilda wie frauen in der wissenschaft verschwinden egreniermaschine
Egreniermaschine, gebaut von Eli Whitney, vermutlich nach einer Idee von Catharine Greene Miller
By Tom Murphy VII – Taken by uploader, user:brighterorange., Public Domain

Neben der männlichen Ablehnung einer grundsätzlichen weiblichen Befähigung nennt sie auch die strukturelle Gewalt der partriarchalischen Gesellschaft, die unter anderem durch soziale Ächtung geschäftstüchtiger Frauen ausgeübt wurde; dies insbesondere anhand der Erfinderin der Egreniermaschine, die der Ingenieur Eli Whitney nur nach der Idee von Catharine Greene Miller (Link Englisch) habe bauen können. Greene Miller habe ihren Namen nicht auf das Patent gesetzt, da derlei Unternehmergeist an einer Dame ungebührlich gewesen wäre. (Diese Anekdote ist allerdings umstritten.)

*

Mehr als 100 Jahre später machte die Wissenschaftshistorikerin Margaret W. Rossiter (Link Englisch) eine ähnliche, immer noch aktuelle Beobachtung. Rossiter hatte während ihres Studiums in Yale bei einem formlosen Treffen von Lehrenden und Studierenden gefragt, ob es jemals weibliche Wissenschaftlerinnen gegeben habe. Die Antwort: „Nein, gab es nicht, jede Frau, die als solche in Frage käme, arbeitete nur einem männlichen Wissenschaftler zu.“ Dies Mitte der 1970er Jahre, wohlgemerkt. Mit dieser Antwort verständlicherweise mehr als unzufrieden, konzentrierte sich Rossiter auf die Rolle der Frauen in der amerikanischen Wissenschaftsgeschichte – und fand in ihrer Arbeit als Postdoktorandin die Biografien hunderter Wissenschaftlerinnen unter anderem im Nachschlagewerk American Men of Science (sic!, inzwischen heißt das Werk American Men and Women of Science, nächster Schritt hoffentlich: American Persons of Science). Sie schrieb darüber in einem Artikel, der von den Magazinen Science und Scientific American abgelehnt wurde, aber schließlich von American Scientist veröffentlicht wurde.

Obwohl ihr nur lauwarmes Interesse aus Wissenschaftler- wie Historiker-Kreisen entgegenschlug und sogar einige Wissenschaftlerinnen meinten, es gäbe in dieser Hinsicht nichts zu entdecken, betrieb Rossiter ihre Forschung weiter. Die Suche nach „verschwundenen“ weiblichen Wissenschaftlerinnen erbrachte immer weitere Funde, sodass Rossiter schließlich nicht nur ein Buch, sondern ganze drei Bände zum Thema Frauen in der Wissenschaft schreiben sollte. 1981 erhielt sie ein Guggenheim-Stipendium, das ihre Arbeit zum Teil finanzierte. Die drei Bände ihrer Arbeit heißen Women Scientists in America, Struggles and Strategies to 1940 (1982), Women Scientists in America: Before Affirmative Action, 1940-1972 (1995) und Women Scientists in American Volume 3: Forging a New World Since 1972 – letzteres wurde 2012 veröffentlicht.

Rossiters eigene akademische Karriere selbst blieb auch nicht unberührt von misogynen Hindernissen, sodass sie sich zeitweise so fühlte wie die Frauen, über die sie schrieb: „Ich nehme an, ich bin eine 78rpm-Schallplatte in einer 33rpm-Welt.“ (Quelle: Wiki) Sie hatte Schwierigkeiten, eine feste Stelle an einer Universität zu erlangen, weil sie als Wissenschaftshistorikerin angeblich keinem Fachbereich richtig angehöre. Eine ursprünglich einjährige Anstellung an der Cornell University wurde zwar auf drei Jahre ausgedehnt, jedoch nur unter finanziellen Einschränkungen. Erst als eine andere Universität ihr eine volle Professur anbot, riss sich ihr Arbeitgeber zusammen und schuf einen Fachbereich für Wissenschaftsgeschichte, in dem sie fest angestellt wurde. Danach konnte sie auch den zweiten Band ihrer Buchreihe herausbringen.

1993 veröffentlichte Rossiter den Artikel, in dem sie den Begriff Matilda-Effekt (hier lohnt sich, wie des Öfteren, auch der Blick auf den englischen Beitrag) prägte: The Matthew Matilda Effect in Science. Sie greift darin auf einen anderen Effekt zurück, der 1968 vom amerikanischen Soziologen Robert K. Merton als Matthäus-Effekt beschrieben wurde. Bezugnehmend auf die Bibelstelle Matthäus 13:12 – „Denn wer da hat, dem wird gegeben, dass er eine Fülle habe; wer aber nicht hat, dem wird auch das genommen, was er hat.“ – bezeichnet er die Tatsache, dass sich bei Personen, die bereits einen Erfolg zu verzeichnen haben, weitere Erfolge anschließen. In der wissenschaftlichen Welt bedeutet dies, dass, wenn ein Wissenschaftler durch ein aufsehenerregendes Forschungsergebnis Aufmerksamkeit und Sichtbarkeit erlangt, er mehr zitiert wird und sich dadurch mehr Chancen für weitere prestigeträchtige Arbeiten auftun. Gleichzeitig verschwinden andere Wissenschaftler mit ihren Ergebnissen hinter dem Glanz dieses „Genies“, ja zum Teil werden deren Erfolge fälschlicherweise auch einem bereits bekannten, erfolgreichen Wissenschaftler zugeordnet. Ironischerweise wird die Beschreibung und Untersuchung dieses Effekts zwar Robert K. Merton zugeschrieben, er stützte seine Arbeit jedoch in hohem Maß auf die Dissertation seiner zweiten Frau, Harriet Zuckerman.

Rossiter führt vor dem Hintergrund ihrer beträchtlichen Recherche für die `Women Scientists in America´-Trilogie einige Beispiele an und erläutert die unterschiedlichen Wege, wie diese Verdrängung in besonderem Maße Frauen in der Wissenschaft betrifft. So verweist sie auf die Nepotismus-Regelung an amerikanischen Universitäten (der auch ich mit ungläubigem Staunen begegnet bin), die es untersagte, dass bei einem Ehepaar beide fest bzw. mit voller Professur an einer Universität arbeiten durften; damit sollte ‚Vetternwirtschaft‘ verhindert werden, was es jedoch tatsächlich vereitelte, war die angemessene Anstellung und Bezahlung wissenschaftlich arbeitender Ehefrauen. Wissenschaftlerinnen waren auch in Gefahr, ‚für ihre Forschung‘ geheiratet zu werden, da ihre Arbeitsergebnisse dann häufig als gemeinschaftlicher Erfolg unter dem Namen des Mannes veröffentlicht werden konnten.

Unter den Beispielen für den Matilda-Effekt, die Rossiter anführt, sind mehrere, die ich auch hier auf frauenfiguren besprochen habe:

Maria Goeppert-Mayer sei ja wie Marie Curie noch recht gut weggekommen, da sie ebenbürtig mit ihren männlichen Kollegen den Nobelpreis für Physik gewonnen habe (vorher war sie jedoch von der fragwürdigen Nepotismus-Regel betroffen gewesen und hatte einen Großteil ihrer Arbeit schlecht oder unbezahlt geleistet). Andere Beispiele sind
• die Pathologin Frieda Robscheit-Robbins (Link Englisch), der 1934 Anteile des Nobelpreises für Physiologie oder Medizin zugestanden hätten
Candace Pert (Link Englisch), die an der Entdeckung der Opioidrezeptoren beteiligt war
Ruth Hubbard, deren sämtliche Forschungsarbeiten zur Biochemie des Sehens nach ihrer Eheschließung mit George Wald unter seinem Namen erfasst wurden
Isabella Karle, die noch 1985 feststellen musste, dass ihre fünfzigjährige Zusammenarbeit mit ihrem Mann an Kristallstrukturanalysen sie weniger für den Nobelpreis für Chemie qualifizierten als einen männlichen Kollegen

Nach diesen zahlreichen namentlichen, jedoch keinesfalls alleinstehenden Beispielen dafür, wie die wissenschaftliche Arbeit von Frauen von Männern angeeignet oder ihnen zugeschrieben wurde, schließt Rossiter den Artikel mit der Darlegung, warum sie sich für Matilda Joslyn Gage als Namenspatin für den Effekt entschieden hat, statt für eine der zwei biblischen Alternativen, Priszilla und Martha (die als Äquivalent zum Evangelist Matthäus nahe lägen). Sie fühlt sich der amerikanischen Menschenrechtsaktivistin am meisten verbunden, aufgrund der eingangs beschriebenen Beobachtung, und wünscht, dass diese ebenfalls in den Schatten der patriarchalen Geschichtsschreibung getauchte Aktivistin durch eine Anerkennung des Matilda-Effektes mehr Aufmerksamkeit erfahren soll.

*

In diesem Jahr der Wissenschaftlerinnen auf frauenfiguren ist mir der Matilda-Effekt in verschiedenen Formen und Abstufungen beinahe jede Woche mindestens einmal begegnet, und jedesmal hat es die Flamme feministischer Wut neu in mir angefacht. Zwei Dinge werden immer wieder deutlich. Erstens: In der männlich dominierten Welt – der Wissenschaft und allgemein – stehen Frauen unter dem Druck, sich als `die Beste´zu positionieren, um überhaupt gesehen zu werden und Raum zu erhalten; dabei müssen sie Heerscharen von guten, mittelmäßigen und auch vernachlässigbaren Männern im gleichen Arbeitsbereich überstrahlen. Frauen können sich nicht erlauben, mittelmäßig zu sein. Und zweitens: Sie sind von Anfang bis Ende (und auch heute noch) von der Unterstützung und dem Wohlwollen der Männer in ihrem Leben abhängig. Die Väter mussten die Ausbildung unterstützen und fördern, die Lehrer und Schulvorstände mussten sie als Schülerinnen und Studentinnen zulassen, die Kollegen mussten sie als gleichwertig betrachten und ihre Arbeit als solche wertschätzen, die Ehemänner mussten ihnen erlauben, weiter zu arbeiten und ihre Erkenntnisse unter dem eigenen Namen zu veröffentlichen. Andere Frauen wiesen vielleicht den Weg, aber die Männer mussten ihn ebnen – und sie vorangehen lassen.

Gegen die patriarchale Dominanz der Männer in der Wissenschaft und der Gesellschaft insgesamt müssen Wissenschaftlerinnen und Frauen allgemein immer noch ankämpfen. Rossiters Erkenntnis und Benennung des Matilda-Effektes sollte dazu beitragen, die misogyne Mechanik zu erkennen und ihr entgegenwirken zu können. Dennoch ist er an vielen Stellen noch immer nicht behoben, denn das System schreibt sich fort, der Effekt selbst wird in Zweifel gezogen und die Bücher, aus denen wir über die Geschichte und die Wissenschaft lernen, sind noch nicht alle umgeschrieben. Als ich dieses Blog ins Leben rief, ging es mir genau darum: Die Vielzahl an unterschiedlichen Frauen aufzuzeigen, die es immer gab und immer geben wird, die in allen Bereichen des Lebens ebenso nennenswert sind wie Männer. Der Matilda-Effekt ist für mich inzwischen ein gängiger Begriff und ich schaue immer öfter einmal mehr danach, ob und wie weit Frauen an wissenschaftlichen und gesellschaftlichen Errungenschaften beteiligt oder sogar federführend waren. Damit Matilda nicht mehr vergessen wird.

*

Übrigens ist es selbstverständlich ganz eigennützig, wenn ich auch hier noch einmal darauf hinweisen möchte, wie wichtig und von mir sehr geschätzt die Arbeit der Wikipedianer:innen ist, die sich besonders um das Vorhandensein und die Ausführlichkeit von Wiki-Beiträgen zu Frauen bemühen; oft gegen starke misogyne Gegenwehr. Hätte ich nicht dieses Blog und zugegebenermaßen mehr mentale Ressourcen und die innere Stärke, wäre das das nächstbeste zu frauenfiguren, womit ich meine Zeit verbringen könnte. So aber möchte ich nur `Danke´sagen und noch mehr Expert:innen und Koryphäen bitten, auf Wikipedia gegen den Matilda-Effekt tätig zu werden.

WEG MIT
§219a!

43/2020: Margaret Kivelson, 21. Oktober 1928

Margaret Kivelson kam in New York als Tochter eines Arztes und einer Physikerin zur Welt. Entgegen der Empfehlung eines Onkels, sie solle – als Mädchen – am besten Ernährungsberaterin werden, verfolgte sie schon früh eine Karriere in der Wissenschaft.

Sie studierte von 1946 an Physik am Radcliffe College, das zur ansonsten nur für männliche Studenten zugänglichen Harvard University gehörte. Dort machte sie 1950 mit 22 Jahren ihren Bachelor Sc., zwei Jahre später den Master Sc. 1955 folgte sie ihrem Ehemann nach Los Angeles und begann in Teilzeit bei der RAND Corporation zu arbeiten, einer Denkfabrik zur Beratung der US-amerikanischen Streitkräfte. Hier war sie bis 1971 auf dem Gebiet der Plasmaphysik tätig, nebenher studierte sie weiter auf einen Doktorgrad Physik.

Als Kivelson 1957 ihren PhD erlangte, mit einer Dissertation über „Die Bremsstrahlung von hochenergetischen Elektronen‚, war sie eine von weniger als 2% weiblicher Doktorandinnen. Sie hatte 1955 bereits ein Kind mit ihrem Mann bekommen und wurde nach ihrer Promovierung ein zweites Mal Mutter. Dafür, dass sie ‚trotz Kindern‘ weiterhin wissenschaftlich arbeitete, wurde sie in Kollegenkreisen kritisiert. Sie ließ sich jedoch nicht entmutigen und wurde 1967 neben ihrer Teilzeitarbeit bei der RAND Corporation als Forschungsasstistentin für Geophysik an der UCLA eingestellt. 1971 wurde sie hier Adjunkt Assistenzprofessorin, dafür beendete sie ihre Arbeit in der Denkfabrik.

Als Physikerin war sie daran beteiligt, die Daten der Pioneer-10 sowie der Pioneer-11 auszuwerten, Raumsonden der NASA, die den Jupiter, Saturn und die äußeren Ränder unseres Sonnensystems erforschten. Zu diesem Zeitpunkt begann sich Margaret Kivelson auf dem Gebiet der Magnetosphären zu spezialisieren.

1973 erhielt sie ein einjähriges Guggenheim-Stipendium, was ihr nach eigener Aussage zum ersten Mal das Gefühl gab, als Wissenschaftlerin ernstgenommen zu werden. „Mehr als Geld, gab es mir Status und steigerte mein Selbstbewusstsein entscheidend.“ (Quelle: Wiki Englisch) Sie schlug der NASA schon 1976 vor, die Galileo-Raumsonde mit Magnetometern auszustatten. Nach den Daten der Pioneer-Missionen stellte sie außerdem 1979 die Vermutung auf, dass nicht nur Planeten, sondern auch Monde ein inneres Magnetfeld haben könnten.

Ende der 1970er, Anfang der 1980er Jahre folgten dem Stipendium auch eine Volle Professur sowie der Vorsitz des Fachbereichs für Erd- und Weltraum-Wissenschaften an der UCLA sowie eine Professur am Institute of Geophysics and Planetary Physics (die deutschen und englischen Wiki-Beiträge sind sich hier nicht einig mit den Daten). 1989 ging die Galileo-Mission endlich an den Start und Margaret Kivelson war daraufhin in der Lage, ihre Vermutung zu bestätigen: Sie entdeckte und erforschte das innere Magnetfeld des Jupitermondes Ganymed, außerdem entdekcte sie das innere Magnetfeld des Jupitermondes Io. Im gleichen Zuge der Galileo-Mission konnte Kivelson auch das Magnetfeld des Asteroiden Gaspra erforschen.

2009 wurde Margaret Kivelson Distinguished Professor of Space Physics Emerita der UCLA und sie trat noch eine weitere Professur an der University of Michigan an. In ihrem Arbeitsleben – mindestens bis 2010 war sie noch akademisch und forschend tätig – war sie Autorin und Ko-Autorin von 350 wissenschaftlichen Schriften. 1989 wurde sie als Fellow der American Association for the Advancement of Science gewählt, 1998 in die American Academy of Arts and Sciences aufgenommen, 1999 in die National Academy of Sciences, 2001 in die American Physical Society, 2005 in die American Philosophical Society.

Und noch in diese Jahr 2020 wurde sie als auswärtiges Mitglied der Royal Society aufgenommen.

*

Ebenfalls diese Woche

19. Oktober 1909: Marguerite Perey
Nachdem sie bis 1934 im Radiuminstitut Paris als Assistentin von Marie Curie gearbeitet hatte, entdeckte die Chemikerin und Physikerin 1939 das letzte zu der Zeit unentdeckte, natürlich vorkommende Element Francium, das zu Ehren ihres Herkunftslandes Frankreich seinen Namen erhielt.

20. Oktober 1859: Margaret Jane Benson (Link Englisch)
Sie gehörte zu den ersten Frauen, die zu Mitgliedern der Linnean Society of London gewählt wurden. Als Paläobotanikerin reiste sie gemeinsam mit Ethel Sargant.

20. Oktober 1942: Christiane Nüsslein-Volhard
Die Biologin und Biochemikerin erhielt 1995 den Nobelpreis für Physiologie oder Medizin über die genetische Kontrolle der frühen Embryonalentwicklung.

23. Oktober 1854: Annie Lorrain Smith (Link Englisch)
Mit Lichens (Flechten) schrieb die englische Mykologin ein Lehrbuch, das auf ihrem Fachgebiet jahrzentelang als Standardwerk galt.

23. Oktober 1913: Alma Howard (Link Englisch)
Die englisch-kanadische Strahlenbiologin entwickelte mit ihrem Physikerkollegen Stephen Pelc erstmalig eine zeitlichen Ablauf des Zellkreislaufes.

24. Oktober 1732: Cristina Roccati (Link Englisch)
Als dritte Frau überhaupt erlangte die Physikerin 1751 einen Abschluss an einer italienischen Universität.

WEG MIT
§219a!

Nobelpreis für Physik 2020

Jetzt hätte ich mich beinahe als Ausführende des Matilda-Effektes schuldig gemacht und eine Wissenschaftlerin unterschlagen, weil sie den Nobelpreis für Physik mit Männern teilt! Ihr wisst es alle schon, der Vollständigkeit halber sage ich aber trotzdem noch mal, dass Andrea Ghez dieses Jahr gemeinsam mit anderen ausgezeichnet wurde für die Entdeckung des supermassiven kompakten Objektes (aka Schwarzes Loch) im Zentrum unserer Galaxie.

WEG MIT
§219a!

Literaturnobelpreis 2020

Louise Glück veröffentlichte schon 1968 ihren ersten Gedichtband Firstborn. Sie wurde in diesem Jahr mit dem Literaturnobelpreis ausgezeichnet ‚für ihre unverwechselbare poetische Stimme, die mit schlichter Schönheit die indivuelle Existenz universell‘ mache.

WEG MIT
§219a!

33/2020: Gerty Cori, 15. August 1896

frauenfiguren gerty cori
By National Library of Medicine, Images from the History of Medicine, B05353, Public Domain

Gerty Cori kam in Prag als Gerty Radnitz zur Welt; ihr Vater, Otto Radnitz, war ein Chemiker, der eine Methode zur Raffination von Zucker erfunden hatte und nun eine eigene Zuckerfabrik leitete, ihre Mutter, Martha geborene Neustadt, war eine kulturell interessierte Frau, die mit Franz Kafka befreundet war. Gerty und ihre beiden jüngeren Schwestern erhielten zunächst Privatunterricht, bevor sie mit zehn Jahren auf das Lyzeum gingen.

Mit 16 Jahren wusste Gerty, dass sie Medizin studieren wollte, ihr fehlten bis dahin jedoch noch einige schulische Kenntnisse. Um diese einzuholen, lernte sie innerhalb eines Jahres die Inhalte von acht Schuljahren Latein und fünf Schuljahren Physik, Chemie und Mathematik. So bestand sie mit 18 Jahren die Aufnahmeprüfung für das Medizinstudium an der Deutschen Karl-Ferdinands-Universität Prag.

Im Studium lernte sie Carl Cori kennen. Die beiden verliebten sich und schlossen 1920 gemeinsam – nachdem Carl zwischenzeitlich im Ersten Weltkrieg eingezogen worden war – ihr Medizinstudium ab. Im gleichen Jahr heirateten sie, wofür Gerty vom Judentum zum Katholizismus konvertierte, und zogen nach Wien. Dort arbeitete Gerty als Assistenzärztin im Karolinen-Kinderspital und erforschte die Funktion der Schilddrüse bei der Regulation der Körpertemperatur. Außerdem schrieb sie mehrere Aufsätze zu Blutkrankheiten. Die Lebensumstände nach dem Krieg waren schwierig, oftmals fehlte es an Lebensmitteln, sodass Gerty sogar Augenprobleme entwickelte, die auf einen Vitamin-A-Mangel zurückzuführen waren. Zur gleichen Zeit wurde der Antisemitismus im Land immer offensichtlicher, sodass das Ehepaar Cori 1922 in die USA auswanderte.

Carl fand eine Anstellung beim State Institute for the Study of Malignant Diseases (heute Roswell Park Cancer Institute, Link Englisch), während Gerty zunächst weitere sechs Monate in Wien blieb, weil sie keine Anstellung fand. Sie zog jedoch schließlich nach und arbeitete mit ihrem Mann im Labor, obwohl der Leiter des Insituts sogar drohte, Carl Cori zu entlassen, wenn Gerty nicht aufhörte. Die beiden ließen sich nicht beirren und erforschten gemeinsam, wie Glucose mit Hilfe von Hormonen im menschlichen Körper verstoffwechselt wird. Das Ehepaar veröffentlichte in der Zeit in Roswell insgesamt 50 Aufsätze gemeinsam – wobei die- oder derjenige zuerst als Autor:in genannt wurde, der oder die die meiste Arbeit geleistet hatte – und Gerty Cori veröffentlichte noch elf weitere Schriften als alleinige Autorin.

1928 nahmen die Coris die amerikanische Staatsbürgerschaft an. Im Folgejahr stellten sie ihre Theorie vor, die ihnen schließlich den Nobelpreis einbringen sollte: den Cori-Zyklus. Dieser beschreibt den biochemischen Kreislauf im menschlichen Körper, mit dem Glucose in den Muskeln zu Lactat umgewandelt wird – Glykolyse genannt – , während gleichzeitig Lactat kurzzeitig in der Leber zu Glucose zurückgebildet wird – Gluconeogenese genannt. Diese Erkenntnis, wie die Verwertung von Zucker in den Muskeln funktioniert, sowie der Rolle der Leber dabei war eine wichtige Grundlage für das Verständnis und somit der Behandlung von Diabetes mellitus.

Diese junge Frau erklärt auf dem Kanal FitfürBiochemie den Cori-Zyklus für halbwegs in die Chemie Eingeweihte

Zwei Jahre, nachdem sie diese Theorie veröffentlicht hatten, verließen sie das Insitut in Roswell. Carl wurden mehrere Stellen ohne Gerty angeboten, eine Position in Buffalo lehnte er ab, weil sie ihm durchaus nicht erlauben wollten, mit seiner Frau zu arbeiten. Gerty wurde sogar ausdrücklich vorgeworfen, sie schade der Karriere ihres Mannes, wenn sie weiter mit ihm arbeite. Schließlich ging das Ehepaar Cori gemeinsam an die Washington University in St. Louis, Missouri, wo ihnen beiden Stellungen angeboten worden waren, allerdings in Gertys Fall in einer niedrigeren Position, mit folgerichtig schlechterer Bezahlung: Sie verdiente als Forschungsassistentin nur ein Zehntel von Carls Gehalt. Arthur Compton, zu dieser Zeit Rektor der Universität, machte für die Coris eine Ausnahme von der Nepotismus-Regel, mit der auch Maria Goeppert-Mayer Schwierigkeiten hatte. Bei ihrer gemeinsamen Arbeit an der Washington University entdeckten Gerty und Carl Cori das Glucose-1-phosphat, eine Form von Glucose, das in vielen Stoffwechselvorgängen eine Rolle spielt und auch nach ihnen Cori-Ester heißt. Sie beschrieben seine Struktur, identifizierten das Enzym, das den Cori-Ester katalysiert und bewiesen, dass Glucose-1-phosphat der erste Schritt in der Umwandlung des Kohlehydrats Glykogen zu Glucose ist, welche im Körper als Energie verwertet werden kann.

Gerty Cori erforschte zur gleichen Zeit auch Glykogenspeicherkrankheiten und identifzierte mindestens vier davon, die jeweils mit individuellen Enyzymdefekten zusammenhängen; die verhältnismäßig harmlose Typ III-Glykogen-Speicherkrankheit heißt nach ihr auch Cori-Krankheit. Sie war die erste Person, die nachwies, dass eine vererbte Krankheit mit einem Enzymdefekt zusammenhängen kann.

Nach 13 Jahren an der Washington University wurde Gerty Cori endlich außerordentliche Professorin und vier Jahre später, 1947, auch volle Professorin. Im gleichen Jahr erfuhr sie, dass sie an Myelosklerose litt, und wenige Monate später wurde ihr gemeinsam mit ihrem Mann und dem argentinischen Physiologen Bernardo Alberto Houssay der Nobelpreis für für Physiologie oder Medizin verliehen. Sie war insgesamt erst die dritte Frau mit einem Nobelpreis – Marie Curie und deren Tochter Irène Joliot-Curie waren die ersten beiden, die diesen Preis für Physik respektive Chemie erhalten hatten. Gerty Cori hingegen war nun die erste Frau, die in der Kategorie Physiologie und Medizin ausgezeichnet wurde.

Im Anschluss an diesen Erfolg wurde sie Fellow der American Academy of Arts and Sciences, als viertes weibliches Mitglied in die National Academy of Sciences gewählt sowie von mehreren anderen Societies aufgenommen, von Harry S. Truman wurde sie zum Ratsmitglied der National Science Foundation ernannt. Nachdem sie jahrzentelang gegen den Widerstand von Entscheidern unbeirrt mit ihrem Mann zusammengearbeitet hatte, wurde ihr nun zwischen 1948 und 1955 die Ehrendoktorwürde an fünf Universitäten verliehen – an der Boston University, am Smith College, an der Yale University, an der Columbia University und an der University of Rochester. Insgesamt gewann sie, zum Teil gemeinsam mit ihrem Mann, sechs hochdotierte wissenschaftliche Preise. Sie arbeitete noch weitere zehn mit immer schlechterer Gesundheit, bis sie am 26. Oktober 1957 an der Myelosklerose verstarb.

1998 wurde Gerty Cori in die National Women’s Hall of Fame aufgenommen. Das Labor an der Washington University, in dem sie gearbeitet hatte, wurde 2004 von der American Chemical Society (deren Mitglied sie war) zur Historic Landmark erklärt. Vier Jahre später brachte der US Postal Service eine 41-cent-Briefmarke ihr zu Ehren heraus. Krater auf dem Mond und der Venus sind nach ihr benannt und noch 2015 taufte das US Department of Energy den Hochleistungrechner im Berkeley Lab nach ihr, der als fünfter in der Liste der 500 leistungsfähigsten Computer rangiert.

Die Website des Nobelpreises führt selbstverständlich ihre Biografie (Link Englisch).

*

Ebenfalls diese Woche

12. August 1898: Maria Klenova (Link Englisch)
Als Begründerin der russischen Meeresgeologie erforschte sie beinahe dreißig Jahre lang die Polarregionen und war die erste Frau, die vor Ort in der Antarktis arbeitete.

12. August 1919: Margaret Burbidge
Diese amerikanische Astronomin tauchte bereits im Beitrag über Vera Rubin auf; die erste weibliche Direktorin des Royal Greenwich Observatory forschte zu Quasaren und wie Rubin zur Rotation von Galaxien.

15. August 1892: Kathleen Curtis (Link Englisch)
Die neuseeländische Mykologin begründete die Pflanzenpathologie in ihrer Heimat; ihre Doktorarbeit schrieb sie über Kartoffelkrebs und sie beschrieb 1926 erstmalig einen Bovisten, der endemisch in Tasmanien und Neuseeland auftritt und heute vom Aussterben bedroht ist, den Claustula fischeri (Link Englisch).

WEG MIT
§219a!

31/2020: Sossina M. Haile, 28. Juli 1966

Sossina M. Haile (Link Englisch) kam in Äthiopiens Haupstadt Addis Abeba zur Welt. Sie war acht Jahre alt, als das ‚Koordinationskomitee der Streitkräfte, Polizei und Territorialarmee‘ gegründet wurde und 1974 die Macht ergriff. In der anschließenden Zeit der politischen Verfolgung wurde ihr Vater, ein Historiker, verhaftet und beinahe getötet, weshalb die Familie in die USA floh. Im ländlichen Minnesota besuchte Haile die Schule, mit 20 Jahren machte sie ihren Bachelor of Science am Massachusetts Institute of Technology (MIT), in Materialwissenschaft und Ingenieurwissenschaft (an den amerikanischen Instituten fallen diese Fächer zusammen zu Materials Science and Engineering, im Folgenden fasse ich dies für die leichtere Lesbarkeit als MSaE zusammen). Einen Master of Science im gleichen Fach erreichte sie an der University of California, Berkeley, bevor sie für einen Doktortitel in MSaE wieder an das MIT zurückkehrte, den sie 1992 erlangte.

Im Gebiet der Material- und Ingenieurwissenschaft ist Sossina M. Haile Expertin für Ionenleitung in Festkörpern: Wie elektrische Ladung in festen Stoffen durch Ionen – statt durch Elektronen – transportiert wird. Die Ionenleitfähigkeit eines Stoffes hängt unter anderem mit seiner Kristallstruktur und deren Zustandsveränderung zusammen, weshalb auch die Kristallstrukturanalyse, die Erforschung der Neutronenstreuung sowie die Thermische Analyse zu Hailes Arbeitsbereich gehören. Das Ziel ihrer Forschungen ist es, die Mechanismen zu verstehen, die den Ionentransport in Festkörpern bestimmen; die Erkenntnisse, zu denen Sossina M. Haile dabei kommt, dienen der Entwicklung von festen (im Gegensatz zu flüssigen) Elektrolyten und ’neuartigen festkörperlichen elektrochemischen Vorrichtungen‘ (‚novel solid-state electrochemical devices‚), wie Batterien, Sensoren, Ionenpumpen und Brennstoffzellen.

Für ihr Doktorandenstudium erhielt Sossina M. Haile ein Stipendium, die AT&T Cooperative Research Fellowship. In der Zeit um ihre Promotion, in der sie am Max-Planck-Institut für Festkörperforschung in Stuttgart forschte, erhielt sie eine Förderung aus dem Fulbright-Programm, im Jahr Postdoc den Humboldt-Forschungspreis. Nach ihrer Promotion war sie zunächst an der University of Washington als Assistenzprofessorin tätig, bis sie 1996 an das California Institute of Technology (CalTech) wechselte. Während der 1990er Jahre gelang es ihr mit ihrem Team, die erste Brennstoffzelle aus Säure-Festkörpern zu entwickeln (Link Englisch), indem sie eine ‚superprotonische‚ chemische Verbindung schuf. Diese setzte sich trotz Effizienz wohl nicht am Markt durch, auch wenn zwei Studenten, die mit Haile gearbeitet hatten, 2003 das Unternehmen Superprotonic gründeten – mit der Professorin als wissenschaftliche Beraterin –, das diese Brennstoffzellen herstellte.

Seit 2015 ist Sossina M. Haile Professorin für Angewandte Physik an der Northwestern University. Hier erforscht sie im Team protonenleitende Säure-Festkörper-Verbindungen, protonenleitende sowie Sauerstoff und Elektronen leitende Perowskit-Verbindungen, Sauerstoff leitende Oxide und Alkalien leitende Silikate. Sie arbeitet dabei mit der bestimmt spannenden, aber mir völlig unverständlichen dielektrischen Spektroskopie.

Auf der Seite der HistoryMakers findet sich ein Videoausschnitt aus einem Interview mit, in dem sie von ihrem Verhältnis zur Religion ihrer Eltern erzählt, deren Messen in der Sakralsprache Altäthiopisch oder Ge’ez gehalten werden.

*

Ebenfalls diese Woche

27. Juli 1876: Edith Marion Patch (Link Englisch)
Die amerikanische Insektenkundlerin wurde 1904 die Leiterin des Fachbereichs Entomologie an der University of Maine; sie gilt als die erste professionell erfolgreiche Frau auf diesem Gebiet.

30. Juli 1746: Louise du Pierry
Nachdem sie ihren zulünftigen Lebensgefährten Jérôme Lalande kennengelernt hatte, begann sich die junge Französin mit der Astronomie zu beschäftigen. Sie wurde die erste (weibliche) Hochschullehrerin für Astronomie an der Sorbonne und Nachfolgerin von Nicole-Reine Lépaute an der Akademie von Béziers.

30. Juli 1947: Françoise Barré-Sinoussi
Für ihre Beteiligung an der Entdeckung von 1983, dass das HI-Virus die Immunkrankheit AIDS auslöst, erhielt die französische Virologin 2008 eine Hälfte des Nobelpreises für Physiologie oder Medizin.

31. Juli 1877: Harriet Margaret Louisa Bolus
Die südafrikanische Botanikerin arbeitete im Bolus-Herbarium, das an die Universität Kapstadt überging, nachdem der Gründer verstorben war. Ihre Spezialität bei der Erforschung der Kapflora waren Orchideen und Heidekrautgewächse.

1. August 1818: Maria Mitchell
Als Tochter in einer Quäker-Familie wurde sie in ihrem wissenschaftlichen Interesse gefördert und hatte früh mit astronomischen Geräten Kontakt. Sie wurde 1848 als erste Frau in die American Academy of Arts and Sciences aufgenommen und war auch die erste weibliche Professorin für Astronomie am Vassar College – der Grund, warum Vera Rubin dort studierte.

WEG MIT
§219a!

30/2020: Vera Rubin, 23. Juli 1928

frauenfiguren vera rubin
vlnr: Anne Kinney, NASA Goddard Space Flight Center, Greenbelt, Md.; Vera Rubin, Dept. of Terrestrial Magnetism, Carnegie Institute of Washington; Nancy Grace Roman Retired NASA Goddard; Kerri Cahoy, NASA Ames Research Center, Moffett Field, Calif.; Randi Ludwig, University of Texas, Austin, Texas. Photo taken during the NASA Sponsors Women in Astronomy and Space Science 2009 Conference, held at the University of Maryland University College (UMUC) Inn and Conference Center, Adelphi, Md, October 21-23 2009
By NASA

Vera Rubin kam in Philadelphia, Pennsylvania zur Welt als Tochter zweier jüdischer Immigranten: Ihr Vater stammte aus Vilnius (damals Polen, heute Litauen) ihre Mutter aus Bessarabien (in der Region des heutigen Moldavien und der Ukraine). Sie zeigte schon mit 10 Jahren Interesse an der Astronomie und beobachtete mit einem selbstgebauten Teleskop aus Pappe Meteoren.

Nachdem sie 1944 die High School abgeschlossen hatte, beschloss sie, am Vassar College zu studieren, weil ihr Vorbild Maria Mitchell dort Professorin gewesen war. Vier Jahre später machte sie dort mit 20 Jahren ihren Bachelor of Science als einzige Absolventin in der Astronomie. Sie wollte sich anschließend in Princeton einschreiben, doch Frauen waren dort damals – und noch für weitere 27 Jahre – nicht zugelassen. Einer Einladung von Harvard folgte Rubin nicht, sondern schrieb sich an der Cornell University in New York ein, da ihr Ehemann Robert dort ebenfalls studierte.

An der Cornell University untersuchte Vera Rubin für ihre Masterarbeit die Bewegungen von 109 Galaxien; dabei war sie eine der ersten Menschen, die Abweichungen von der Hubble-Konstante beobachtete. Kurz gefasst beschreibt die Hubble-Konstante, oder heute: der Hubble-Parameter, die Rate der Expansion des Universums. Durch ihre Beobachtungen kam sie zunächst zu der These, dass es in der Expansion eine Orbitalbewegung des Universums um einen Pol gäbe – eine These, die widerlegt wurde. Doch Rubins Ableitung aus ihren Ergebnissen, dass die Galaxien sich grundsätzlich im Universum fortbewegen, stellte sich als wahr heraus und war Grundlage für weitere Forschungen in dieser Hinsicht. Rubin lieferte mit den Ergebnissen auch einen Beweis für eine Supergalaktische Ebene, die wiederum die Basis bildet für das Supergalaktische Koordinatensystem.

Vera Rubin schloss mit ihrer Forschungsarbeit 1951 ihren Mastertitel ab. Sie trat auch den Kampf an, ihre als kontrovers betrachteten Ergebnisse auch bei der American Astronomical Society zu präsentieren, obwohl sie zu diesem Zeitpunkt ein Kind hatte und mit dem zweiten schwanger war. Sie wurde jedoch abgelehnt, ihre Arbeit wurde übersehen.

Weder von diesem Rückschlag noch vom Elterndasein ließ sich Rubin davon abhalten, ihre Karriere fortzusetzen. Sie schrieb sich für ein Doktorandenstudium an der Georgetown University ein, als Doktorvater betreute sie George Gamow. In den drei Jahren, in denen sie an ihrer Dissertation schrieb, wurde ihr unter anderem einmal untersagt, ihren Doktorvater in seinem Büro zu treffen, weil Frauen diesen Bereich der Universität nicht betreten durften. Ihren Doktortitel erlangte sie 1954 mit einer Dissertation, in der sie die Theorie aufstellte, dass Galaxien in Clustern oder Haufen auftreten, statt zufällig über das Universum verteilt zu sein. Auch dieser Gedanke Rubin war zu diesem Zeitpunkt kontrovers zum allgemeinen Wissensstand und wurde in den folgenden 20 Jahren nicht weiter verfolgt.

Nach ihrer Promotion arbeitete Rubin in den folgenden elf Jahren an diversen Instituten als Lehrerin, Forschungsastronomin und Assistenzprofessorin; da sie auch insgesamt vier Kinder hatte, übte sie große Teile ihres Berufs von zu Hause aus. 1963 arbeitete sie für ein Jahr mit Geoffrey und Margaret Burbidge zusammen an der Erforschung der Galaxienrotation am McDonald Observatory in Texas. Mit Burbidge sollte sie auch danach der allgemeine politische Einsatz für Frauen in der Wissenschaft verbinden. 1965 wurde Rubin Angestellte der Carnegie Institution of Washington, heute Carnegie Institution of Science. Im Rahmen dieser Anstellung ersuchte sie auch um die Möglichkeit, am Palomar Observatory in San Diego zu arbeiten. Dort angekommen, musste sie feststellen, dass es vor Ort keine „facilities“, also Schlaf- und Sanitärräume für Frauen gab. Vera Rubin schnitt ein Stück Papier in Form eines Rocks aus, klebte dieses über eine der ‚männlichen‘ Türschilder und schuf so die Verhältnisse, die ihr einen Aufenthalt erleichtern würden (so schildert es dieser Artikel in The Atlantic).

Ebenfalls bei ihrer Tätigkeit an der Carnegie Institution traf sie auf Kent Ford, der astronomische Instrumente herstellte. Unter anderem hatte er ein optisches Spektrometer gebaut, das die Spektren jener Himmelskörper optisch verstärkte, die bisher zu dunkel waren, um sie zu deuten. Mit den Instrumenten von Ford machte Rubin unter anderem an der Andromedagalaxie unter anderem eine Beobachtung, die als Rubin-Ford-Effekt (Link Englisch) bekannt wurde: Eine Anisotropie in der Expansion des Universums, beobachtet allerdings an einer begrenzten Anzahl Galaxien und heute zu einem nur augenscheinlichen, nicht tatsächlichen Phänomen erklärt. (Eine Anisotropie ist eine Eigenschaft, die von der Richtung einer Bewegung abhängig ist.) Die Ergebnisse ihrer Forschungen wurden jedoch wieder einmal als zu kontrovers von der wissenschaftlichen Gemeinschaft abgelehnt. 1976 veröffentlichte Rubin eine Arbeit, in dem sie die Theorie einer Pekuliargeschwindigkeit nicht nur für Sterne, sondern auch für Galaxien aufstellte, die anfangs abgelehnt, aber heute als ‚large streaming scale‚ akzeptiert ist.

frauenfiguren rotationskurve
Tatsächliche Rotationskurve der Spiralgalaxie Messier 33 (gelbe und blaue Punkte mit Fehlerbalken) und eine aufgrund der Verteilung sichtbarer Materie vorhergesagte (graue Linie).
Von Mario De Leo – Eigenes Werk, CC BY-SA 4.0

Für eine kurze Zeit befassten sich Rubin und Ford auch mit Quasaren, die gerade erst entdeckt worden waren. Sie wandte sich jedoch lieber einem Forschungsbereich zu, in dem sie hoffte, weniger Ablehnung zu erfahren, und untersuchte schließlich die Rotation von Galaxien und ihren Außenbezirken. Sie beobachtete hierbei flache Rotationskurven im Gegensatz zu den wieder abfallenden Kurven, die nach optisch erfassbaren Tatsachen zu erwarten waren. In den Außenbezirken müsste sich eine Galaxie nach dieser Erwartung langsamer drehen – stattdessen beobachtete Rubin, dass sich die äußeren Arem von Spiralgalaxien ebenso schnell um den Mittelpunkt drehen wie die inneren Bereiche. Außerdem drehen sich die Galaxien so schnell, dass sie auseinanderfliegen müssten, wenn der einzige Zusammenhalt, den sie haben, die Schwerkraft ihrer Sterne wäre. Diese beiden Beobachtungen ließen Vera Rubin schließen, dass diese Galaxien Dunkle Materie enthalten müssen und von einem Halo, einem ‚Heiligenschein‘ aus Dunkler Materie umgeben sein müssen. (Der Artikel zu Dunkler Materie enthält auch die schöne Videodatei, welche Bewegung ohne Dunkle Materie zu erwarten wäre und welche tatsächlich vorgefunden wird.) Nach ihren Berechnungen müssten Galaxien etwa fünf bis zehn Mal so viel Dunkle wie gewöhnliche Materie enthalten. Mit ihren Forschungsergebnissen lieferte sie die erste überzeugende Hinweise für diese Theorie, die in den 1930ern erstmals von zwei Astronomen, Jan Hendrik Oort und Fritz Zwicky postuliert wurde.

Später sollte Vera Rubins These durch die Entdeckung der kosmischen Hintergrundstrahlung und des Gravitationslinseneffektes bestätigt werden. Ihre ebenfalls auf diesen Ergebnissen basierende Theorie über nicht-Newtonsche Schwerkraft, die auf Galaxien wirkt, ist nicht wissenschaftlich akzeptiert oder bewiesen. Zur gleichen Zeit erforschte Vera Rubin das Phänomen des Gegenrotation in Galaxien und lieferte erste Nachweise dafür, dass Galaxien durch ihre Bewegung im Universum fusionieren, sowie zum Prozess, mit welchem Galaxien entstehen.

1981 wurde Vera Rubin zum Mitglied der National Academy of Sciences gewählt, als zweite weibliche Astronomin nach ihrer Kollegin Margaret Burbidge. 1996 wurde ihr die Goldmedaille der Royal Astronomical Society verliehen – als zweiter Frau, 168 Jahre nach der ersten Frau, der diese Ehrung zuteil wurde: Caroline Herschel. Das Dicovery Magazin nannte sie 2002 als eine der 50 wichtigsten Frauen in der Wissenschaft. Sie gewann nie einen Nobelpreis, was die Physikerin Lisa Randall und Astronomin Emily Levesque (Link Englisch) für eine Nachlässigkeit halten. Vera Rubin wird von jüngeren Kolleginnen wie Sandra M. Faber und Neta Bahcall (Link Englisch) als wichtiger Einfluss für ihre Wissenschaftskarrieren genannt, als eine derjenigen, die den Weg vorgaben für Frauen in der Wissenschaft, ein Leuchtfeuer für diejenigen, die Familie und eine Karriere in der Astronomie wollten. Rebecca Oppenheimer (Link Englisch), eine der Kuratorinnen für Astrophysik am American Museum of Natural History in New York, nennt Rubins Mentorinnenschaft als entscheidend für ihre Karriere.

Vera Rubin hatte vier Kinder, denen sie nach deren Aussagen vorlebte, dass „ein Leben in der Wissenschaft Spaß mache und erstrebenswert sei“ (Quelle: Wiki), was alle vier veranlasste, ebenfalls Wissenschaftler:innen zu werden. Gemeinsam mit ihrer Kollegin Burbidge setzte sich Rubin für die Repräsentation von Frauen in wissenschaftlichen Institutionen ein, die wenigen weiblichen Mitglieder in der National Academy of Science nannte sie „das Traurigste in ihrem Leben“. Sie starb am 25. Dezember 2016 an Komplikationen ihrer Demenzerkrankung.

Die Carnegie Institution of Science rief ihr zu Ehren ein Forschungsstipendium für Postdoktoranden ins Leben; die Division on Dynamical Astronomy der American Astronomical Society verleiht den Vera Rubin Early Career Prize. Im Dezember 2019 wurde das Large Synoptic Survey Telescope, das auf einem Gipfel des Cerro Panchon in Chile gebaut wird, als Vera C. Rubin Observatory umbenannt. Es soll im kommenden Jahr 2021 first light haben, endgültig fertiggestellt wird es nach Plan 2022.

*

Ebenfalls diese Woche

22. Juli 1776: Etheldred Benett
Der britischen Paläontologin wurde von Zar Nikolaus I. die Ehrendoktorwürde der Universität St. Petersburg verliehen; er wusste wohl nicht, dass es sich bei ihr um eine Frau handelte.

25. Juli 1920: Rosalind Franklin
Quasi das Postergirl des Matilda-Effekts; von ihr nutzten Watson und Crick ungefragt und unauthorisiert Röntgenstrukturanalysen, die ihnen zur Entschlüsselung der DNA-Struktur verhalfen. Jahrelang wurde in wissenschaftlichen und biografischen Texten herablassend mit ihr umgegangen.

25. Juli 1956: Frances H. Arnold
Für ihre Pionierarbeit auf dem Gebiet der Gerichteten Evolution wurde der Biochemikerin 2018 der Nobelpreis für Chemie verliehen.

WEG MIT
§219a!

29/2020: Eunice Newton Foote, 17. Juli 1819

Eunice Newton Foote wuchs als eines von 12 Geschwistern in Bloomfield, New York, auf; mit 17 Jahren besuchte sie für zwei Jahre das Troy Female Seminary (Link Englisch) (heute Emma Willard School). Die Schülerinnen dort durften Vorlesungen am nahegelegenen College hören, wo Newton die Grundlagen der Chemie und Biologie erlernte. Großen Einfluss auf sie hatten die Lehrbücher von Almira Hart Lincoln Phelps (Link Englisch), einer Schwester von Emma Willard, Botanikerin und drittes weibliches Mitglied der American Association for the Advancement of Science.

Newton Foote setzte sich grundsätzlich für Frauenrechte ein, so gehörte sie zu den Unterzeichnerinnen der Declaration of Sentiments auf der Seneca Falls Convention 1848, ihr Ehemann seit 1841, Elisha Foote, ebenso.

Davon abgesehen unternahm sie Experimente zur Erwärmung von Gasen. Ihre Ausstattung dafür war laienhaft, aber mit einer Luftpumpe, vier Quecksilberthermometern und zwei Glaszylindern machte sie als erste eine Entdeckung, die für uns heute relevanter denn je ist. Sie platzierte jeweils zwei Thermometer in einem der beiden Glaszylinder, aus einem pumpte sie die Luft ab, im anderen sorgte sie für erhöhten Druck. So stellte sie diese Gefäße ins Sonnenlicht und beobachtete die unterschiedliche Wärmeentwicklung und Abkühlung darin. Sie führte diese Proben auch mit unterschiedlichen Feuchtigkeitsgraden durch sowie mit Wasserstoff und Kohlendioxid. Dabei stellte Newton Foote fest, dass der Zylinder mit CO2 sich sowohl am stärksten erhitzte (auf etwa 52 Grad), wie sich auch am langsamsten wieder abkühlte. Aus dieser Entdeckung schloss sie, in dem Bericht, den sie über ihre Forschung schrieb, dass erhöhte Kohlendioxidwerte in der Atmosphäre der Erde für erhöhte Temperaturen und somit ein wärmeres Klima sorgen müssten. Eunice Newton Foote blickte selbst vor allem in die Vergangenheit, in der die Erde wahrscheinlich wärmer gewesen war, doch für uns heute ist diese Schlussfolgerung bekannt als der Treibhauseffekt – den Newton Foote somit bereits vor 1856 entdeckte.

Auf der Jahrestagung der American Association for the Advancement of Science 1856 wurde dieser Bericht vorgestellt. Warum Eunice Newton Foote in nicht selbst vortrug, ist unklar, doch statt ihrer verlas der Physiker Joseph Henry ihre Arbeit. Er stellte dem voran: „Die Wissenschaft hatte kein Land und kein Geschlecht. Die Sphäre der Frau umfasst nicht nur das Schöne und Nützliche, sondern auch das Wahre.“ (Quelle: Smithsonianmag.com)

Der Artikel wurde im gleichen Jahr noch unter ihrem Namen im American Journal of Science veröffentlicht, doch in den jährlichen Proceedings, der Sammlung von Einreichungen der AAAS-Tagungen, erschien Newton Footes Artikel nicht. Zusammenfassungen ihrer Forschung wurde zwar noch mehrfach in den Vereinigten Staaten und Europa geteilt, doch dann zum Teil ohne ihre bahnbrechende Schlussfolgerung oder gar unter dem Namen ihres Ehemanns. Nur das Magazin Scientific American erwähnte Newton Foote lobend noch einmal in seiner Ausgabe „Scientific Ladies„.

Drei Jahre später stellte John Tyndall – unter professionelleren Bedingungen – ähnliche Forschungen an, allerdings registrierte er die infrarote Wärmestrahlung, statt, wie Newton Foote es nannte, die ‚Sonneneinstrahlung‘. Im Artikel über seine Ergebnisse erwähnte Tyndall Claude Pouillet, doch nicht Eunice Newton Foote. Es ist unter den damaligen Verhältnissen durchaus möglich, dass Tyndall schlicht keine Kenntnis hatte von den Experimenten Newton Footes, denn Europa (Tyndall war Brite) wurde als Zentrum der Wissenschaft empfunden und US-amerikanische Forschungen nicht sehr beachtet. Heute gilt Tyndall allgemein als der Entdecker des Treibhauseffektes, obwohl Eunice Newton Foote diesen drei Jahre zu vor bereits beobachtet hatte.

Newton Foote veröffentlichte weitere Artikel zu anderen wissenschaftlichen Themen und entwickelte mehrere Patente. Sie starb am 30. September 1888.

Zur ihrer späten Anerkennung verhalf ihr 2010 Ray Sorenson, ein pensionierter Geologe für Erdöl, der auf sie in der 1857-Jahresausgabe der Annual Scientific Discovery stieß. Er erkannte, welche Bedeutung ihre damals untergegangene Entdeckung und Schlussfolgerung für die heutige Welt hatte, dass sie seither jedoch unerwähnt blieb. Er schrieb einen Beitrag im Online-Magazin Search and Discovery der American Association of Petroleum Geologists, der mehr Aufmerksamkeit erregte als jeder Beitrag von ihm zuvor. Acht Jahre später fand an der University of California, Santa Barbara eine Ausstellung in der Bibliothek sowie eine Vorlesung zu Eunice Newton Foote statt. Inzwischen ist ihr Name als entscheidende Mitwirkende an der Klimaforschung bekannter, wenn auch noch nicht im gleichen Atemzug wie John Tyndall.

Es greifen mehrere Gründe ineinander, warum Eunice Newton Foote ein Opfer des Matilda-Effektes wurde und ihre Erkenntnis über die klimatische Bedeutung des Kohlendioxids unterging. Wie oben beschrieben, wurden US-amerikanische Forschungen und Erkenntnisse in Europa oftmals nicht wahrgenommen oder wertgeschätzt. Ebenso hatte Newton Foote eben aufgrund ihrer Vielseitigkeit keinen Status als Expertin oder Koryphäe. Doch schon ihr Unterstützer Joseph Henry erkannte, dass auch ihr Geschlecht der Anlass war, warum männliche Wissenschaftler ihren Erkenntnissen keine Bedeutung beimaßen. Ein Artikel in der New York Times aus der Reihe Overlooked befasst sich ebenfalls mit diesen Aspekten und lässt ihre Nachfahren, zum Teil selbst Wissenschaftlerinnen in der Klimaforschung, zu Wort kommen.

*

Ebenfalls diese Woche

14. Juli 1862: Florence Bascom
Die amerikanische Geologin war die erste Frau, die 1924 als Mitglied der Geological Society of America zugelassen wurde, später war sie sogar Vizepräsidentin der Gesellschaft.

15. Juli 1753: Almira Hart Lincoln Phelps
Wie es der Zufall will, ist diese Pädagogin bereits oben im Text verlinkt: Sie schrieb zahlreiche naturwissenschaftliche Lehrbücher für Schülerinnen.

15. Juli 1943: Jocelyn Bell Burnell
Gemeinsam mit ihren Kollegen Antony Hewish und Martin Ryle entdeckte die britische Radioastronomin als erste einen Pulsar, der später als Neutronenstern interpretiert wurde. Ihre Kollegen erhielten 1974 den Nobelpreis für Physik, Bell Burnell hingegen wurde nicht geehrt, was sie mit einiger Gelassenheit hinnahm (Link Englisch). 2018 gewann sie den Special Breakthrough Prize in Fundamental Physics, aus dem Preisgeld gründete sie eine Stiftung, die Stipendium für Studierende der Physik vergibt, die als Frauen, ethnische Minderheiten oder Flüchtlinge in der akademischen Welt benachteiligt sind.

19. Juli 1921: Rosalyn Sussman Yalow
Über die Trägerin des Nobelpreises für Medizin schrieb ich 2015.

WEG MIT
§219a!