Schlagwort: national academy of sciences

43/2020: Margaret Kivelson, 21. Oktober 1928

Margaret Kivelson kam in New York als Tochter eines Arztes und einer Physikerin zur Welt. Entgegen der Empfehlung eines Onkels, sie solle – als Mädchen – am besten Ernährungsberaterin werden, verfolgte sie schon früh eine Karriere in der Wissenschaft.

Sie studierte von 1946 an Physik am Radcliffe College, das zur ansonsten nur für männliche Studenten zugänglichen Harvard University gehörte. Dort machte sie 1950 mit 22 Jahren ihren Bachelor Sc., zwei Jahre später den Master Sc. 1955 folgte sie ihrem Ehemann nach Los Angeles und begann in Teilzeit bei der RAND Corporation zu arbeiten, einer Denkfabrik zur Beratung der US-amerikanischen Streitkräfte. Hier war sie bis 1971 auf dem Gebiet der Plasmaphysik tätig, nebenher studierte sie weiter auf einen Doktorgrad Physik.

Als Kivelson 1957 ihren PhD erlangte, mit einer Dissertation über „Die Bremsstrahlung von hochenergetischen Elektronen‚, war sie eine von weniger als 2% weiblicher Doktorandinnen. Sie hatte 1955 bereits ein Kind mit ihrem Mann bekommen und wurde nach ihrer Promovierung ein zweites Mal Mutter. Dafür, dass sie ‚trotz Kindern‘ weiterhin wissenschaftlich arbeitete, wurde sie in Kollegenkreisen kritisiert. Sie ließ sich jedoch nicht entmutigen und wurde 1967 neben ihrer Teilzeitarbeit bei der RAND Corporation als Forschungsasstistentin für Geophysik an der UCLA eingestellt. 1971 wurde sie hier Adjunkt Assistenzprofessorin, dafür beendete sie ihre Arbeit in der Denkfabrik.

Als Physikerin war sie daran beteiligt, die Daten der Pioneer-10 sowie der Pioneer-11 auszuwerten, Raumsonden der NASA, die den Jupiter, Saturn und die äußeren Ränder unseres Sonnensystems erforschten. Zu diesem Zeitpunkt begann sich Margaret Kivelson auf dem Gebiet der Magnetosphären zu spezialisieren.

1973 erhielt sie ein einjähriges Guggenheim-Stipendium, was ihr nach eigener Aussage zum ersten Mal das Gefühl gab, als Wissenschaftlerin ernstgenommen zu werden. „Mehr als Geld, gab es mir Status und steigerte mein Selbstbewusstsein entscheidend.“ (Quelle: Wiki Englisch) Sie schlug der NASA schon 1976 vor, die Galileo-Raumsonde mit Magnetometern auszustatten. Nach den Daten der Pioneer-Missionen stellte sie außerdem 1979 die Vermutung auf, dass nicht nur Planeten, sondern auch Monde ein inneres Magnetfeld haben könnten.

Ende der 1970er, Anfang der 1980er Jahre folgten dem Stipendium auch eine Volle Professur sowie der Vorsitz des Fachbereichs für Erd- und Weltraum-Wissenschaften an der UCLA sowie eine Professur am Institute of Geophysics and Planetary Physics (die deutschen und englischen Wiki-Beiträge sind sich hier nicht einig mit den Daten). 1989 ging die Galileo-Mission endlich an den Start und Margaret Kivelson war daraufhin in der Lage, ihre Vermutung zu bestätigen: Sie entdeckte und erforschte das innere Magnetfeld des Jupitermondes Ganymed, außerdem entdekcte sie das innere Magnetfeld des Jupitermondes Io. Im gleichen Zuge der Galileo-Mission konnte Kivelson auch das Magnetfeld des Asteroiden Gaspra erforschen.

2009 wurde Margaret Kivelson Distinguished Professor of Space Physics Emerita der UCLA und sie trat noch eine weitere Professur an der University of Michigan an. In ihrem Arbeitsleben – mindestens bis 2010 war sie noch akademisch und forschend tätig – war sie Autorin und Ko-Autorin von 350 wissenschaftlichen Schriften. 1989 wurde sie als Fellow der American Association for the Advancement of Science gewählt, 1998 in die American Academy of Arts and Sciences aufgenommen, 1999 in die National Academy of Sciences, 2001 in die American Physical Society, 2005 in die American Philosophical Society.

Und noch in diese Jahr 2020 wurde sie als auswärtiges Mitglied der Royal Society aufgenommen.

*

Ebenfalls diese Woche

19. Oktober 1909: Marguerite Perey
Nachdem sie bis 1934 im Radiuminstitut Paris als Assistentin von Marie Curie gearbeitet hatte, entdeckte die Chemikerin und Physikerin 1939 das letzte zu der Zeit unentdeckte, natürlich vorkommende Element Francium, das zu Ehren ihres Herkunftslandes Frankreich seinen Namen erhielt.

20. Oktober 1859: Margaret Jane Benson (Link Englisch)
Sie gehörte zu den ersten Frauen, die zu Mitgliedern der Linnean Society of London gewählt wurden. Als Paläobotanikerin reiste sie gemeinsam mit Ethel Sargant.

20. Oktober 1942: Christiane Nüsslein-Volhard
Die Biologin und Biochemikerin erhielt 1995 den Nobelpreis für Physiologie oder Medizin über die genetische Kontrolle der frühen Embryonalentwicklung.

23. Oktober 1854: Annie Lorrain Smith (Link Englisch)
Mit Lichens (Flechten) schrieb die englische Mykologin ein Lehrbuch, das auf ihrem Fachgebiet jahrzentelang als Standardwerk galt.

23. Oktober 1913: Alma Howard (Link Englisch)
Die englisch-kanadische Strahlenbiologin entwickelte mit ihrem Physikerkollegen Stephen Pelc erstmalig eine zeitlichen Ablauf des Zellkreislaufes.

24. Oktober 1732: Cristina Roccati (Link Englisch)
Als dritte Frau überhaupt erlangte die Physikerin 1751 einen Abschluss an einer italienischen Universität.

Anna Coble

* 1936 • † 3. März 2009

Anna Coble (Link Englisch) war die Tochter eines Dozenten an der St. Augustine’s University (Link Englisch) in Raleigh, North Carolina, einer Hochschule für PoC (Afro–Amerikaner). Anna interessierte sich früh für Mathematik und Physik, daher studierte sie schließlich Mathematik an der Howard University, ebenfalls eine für PoC gegründete Hochschule. Sie erreichte dort mit 22 Jahren ihren Bachelor of Science und drei Jahre später ihren Master of Science. Nach diesem Abschluss im Jahr 1961 unterrichtete sie zunächst für vier Jahre Physik an der North Carolina Agricultural and Technical State University.

1965 begann sie dann ein postgraduales Studium an der University of Illinois at Urbana-Champaign. Sie wurde hier eine Fürsprecherin für Studierende, die aufgrund ihrer Zugehörigkeit zu einer Minderheit oder als Frauen benachteiligt waren. Als Anna Coble hier 1973 schließlich ihren Doktortitel erlangte, war sie die erste WoC (Afro-Amerikanerin), die diesen akademischen Grad in Biophysik erhielt. Sie erforschte anschließend an der Washington University in St. Louis die Auswirkungen von hochintensivem Ultraschall auf Frösche.

Als Coble an die Howard University zurückkehrte, dieses Mal als Dozentin, war sie die erste WoC, die dort eingestellt wurde – Mitte der 1970er Jahre. In ihrem ersten Sommer dort stellte sie ihre eigenen Forschungen zunächst zurück, um für die etwa 200 Studenten of Color Wohnungen zu organisieren. Sie fand auch für sich selbst eher suboptimale Voraussetzungen vor, in ihrer Zeit an der Howard University wurden die staatlichen Förderungen für die Forschung dort um an die 40% gekürzt. Coble wurde schließlich im Lauf ihrer Karriere zur Associate Professor berufen.

Sie war neben ihrer Lehr- und Forschungstätigkeit auch sozial engagiert. So gehörte sie zum Vorstand einer Organisation, die Wohnheime für vernachlässigte weibliche Teenager leitete. Da politische und soziale Diskriminierung auch in ihrem wissenschaftlichen Fachgebiet eine Rolle spielte, gehörte sie zu den Gründungsmitgliedern der National Society of Black Physicists (Link Englisch). Mit der National Academy of Sciences und dem National Research Council entwickelte sie Lehrmaterialien, bei der American Association for the Advancement of Science setzte sie sich für die stärkere Unterstützung unterrepräsentierter Gruppierungen ein, namentlich der Frauen und ethnischer Minderheiten.

Anna Coble starb am 3. März 2009 im Alter von 73 Jahren.

33/2020: Gerty Cori, 15. August 1896

frauenfiguren gerty cori
By National Library of Medicine, Images from the History of Medicine, B05353, Public Domain

Gerty Cori kam in Prag als Gerty Radnitz zur Welt; ihr Vater, Otto Radnitz, war ein Chemiker, der eine Methode zur Raffination von Zucker erfunden hatte und nun eine eigene Zuckerfabrik leitete, ihre Mutter, Martha geborene Neustadt, war eine kulturell interessierte Frau, die mit Franz Kafka befreundet war. Gerty und ihre beiden jüngeren Schwestern erhielten zunächst Privatunterricht, bevor sie mit zehn Jahren auf das Lyzeum gingen.

Mit 16 Jahren wusste Gerty, dass sie Medizin studieren wollte, ihr fehlten bis dahin jedoch noch einige schulische Kenntnisse. Um diese einzuholen, lernte sie innerhalb eines Jahres die Inhalte von acht Schuljahren Latein und fünf Schuljahren Physik, Chemie und Mathematik. So bestand sie mit 18 Jahren die Aufnahmeprüfung für das Medizinstudium an der Deutschen Karl-Ferdinands-Universität Prag.

Im Studium lernte sie Carl Cori kennen. Die beiden verliebten sich und schlossen 1920 gemeinsam – nachdem Carl zwischenzeitlich im Ersten Weltkrieg eingezogen worden war – ihr Medizinstudium ab. Im gleichen Jahr heirateten sie, wofür Gerty vom Judentum zum Katholizismus konvertierte, und zogen nach Wien. Dort arbeitete Gerty als Assistenzärztin im Karolinen-Kinderspital und erforschte die Funktion der Schilddrüse bei der Regulation der Körpertemperatur. Außerdem schrieb sie mehrere Aufsätze zu Blutkrankheiten. Die Lebensumstände nach dem Krieg waren schwierig, oftmals fehlte es an Lebensmitteln, sodass Gerty sogar Augenprobleme entwickelte, die auf einen Vitamin-A-Mangel zurückzuführen waren. Zur gleichen Zeit wurde der Antisemitismus im Land immer offensichtlicher, sodass das Ehepaar Cori 1922 in die USA auswanderte.

Carl fand eine Anstellung beim State Institute for the Study of Malignant Diseases (heute Roswell Park Cancer Institute, Link Englisch), während Gerty zunächst weitere sechs Monate in Wien blieb, weil sie keine Anstellung fand. Sie zog jedoch schließlich nach und arbeitete mit ihrem Mann im Labor, obwohl der Leiter des Insituts sogar drohte, Carl Cori zu entlassen, wenn Gerty nicht aufhörte. Die beiden ließen sich nicht beirren und erforschten gemeinsam, wie Glucose mit Hilfe von Hormonen im menschlichen Körper verstoffwechselt wird. Das Ehepaar veröffentlichte in der Zeit in Roswell insgesamt 50 Aufsätze gemeinsam – wobei die- oder derjenige zuerst als Autor:in genannt wurde, der oder die die meiste Arbeit geleistet hatte – und Gerty Cori veröffentlichte noch elf weitere Schriften als alleinige Autorin.

1928 nahmen die Coris die amerikanische Staatsbürgerschaft an. Im Folgejahr stellten sie ihre Theorie vor, die ihnen schließlich den Nobelpreis einbringen sollte: den Cori-Zyklus. Dieser beschreibt den biochemischen Kreislauf im menschlichen Körper, mit dem Glucose in den Muskeln zu Lactat umgewandelt wird – Glykolyse genannt – , während gleichzeitig Lactat kurzzeitig in der Leber zu Glucose zurückgebildet wird – Gluconeogenese genannt. Diese Erkenntnis, wie die Verwertung von Zucker in den Muskeln funktioniert, sowie der Rolle der Leber dabei war eine wichtige Grundlage für das Verständnis und somit der Behandlung von Diabetes mellitus.

Diese junge Frau erklärt auf dem Kanal FitfürBiochemie den Cori-Zyklus für halbwegs in die Chemie Eingeweihte

Zwei Jahre, nachdem sie diese Theorie veröffentlicht hatten, verließen sie das Insitut in Roswell. Carl wurden mehrere Stellen ohne Gerty angeboten, eine Position in Buffalo lehnte er ab, weil sie ihm durchaus nicht erlauben wollten, mit seiner Frau zu arbeiten. Gerty wurde sogar ausdrücklich vorgeworfen, sie schade der Karriere ihres Mannes, wenn sie weiter mit ihm arbeite. Schließlich ging das Ehepaar Cori gemeinsam an die Washington University in St. Louis, Missouri, wo ihnen beiden Stellungen angeboten worden waren, allerdings in Gertys Fall in einer niedrigeren Position, mit folgerichtig schlechterer Bezahlung: Sie verdiente als Forschungsassistentin nur ein Zehntel von Carls Gehalt. Arthur Compton, zu dieser Zeit Rektor der Universität, machte für die Coris eine Ausnahme von der Nepotismus-Regel, mit der auch Maria Goeppert-Mayer Schwierigkeiten hatte. Bei ihrer gemeinsamen Arbeit an der Washington University entdeckten Gerty und Carl Cori das Glucose-1-phosphat, eine Form von Glucose, das in vielen Stoffwechselvorgängen eine Rolle spielt und auch nach ihnen Cori-Ester heißt. Sie beschrieben seine Struktur, identifizierten das Enzym, das den Cori-Ester katalysiert und bewiesen, dass Glucose-1-phosphat der erste Schritt in der Umwandlung des Kohlehydrats Glykogen zu Glucose ist, welche im Körper als Energie verwertet werden kann.

Gerty Cori erforschte zur gleichen Zeit auch Glykogenspeicherkrankheiten und identifzierte mindestens vier davon, die jeweils mit individuellen Enyzymdefekten zusammenhängen; die verhältnismäßig harmlose Typ III-Glykogen-Speicherkrankheit heißt nach ihr auch Cori-Krankheit. Sie war die erste Person, die nachwies, dass eine vererbte Krankheit mit einem Enzymdefekt zusammenhängen kann.

Nach 13 Jahren an der Washington University wurde Gerty Cori endlich außerordentliche Professorin und vier Jahre später, 1947, auch volle Professorin. Im gleichen Jahr erfuhr sie, dass sie an Myelosklerose litt, und wenige Monate später wurde ihr gemeinsam mit ihrem Mann und dem argentinischen Physiologen Bernardo Alberto Houssay der Nobelpreis für für Physiologie oder Medizin verliehen. Sie war insgesamt erst die dritte Frau mit einem Nobelpreis – Marie Curie und deren Tochter Irène Joliot-Curie waren die ersten beiden, die diesen Preis für Physik respektive Chemie erhalten hatten. Gerty Cori hingegen war nun die erste Frau, die in der Kategorie Physiologie und Medizin ausgezeichnet wurde.

Im Anschluss an diesen Erfolg wurde sie Fellow der American Academy of Arts and Sciences, als viertes weibliches Mitglied in die National Academy of Sciences gewählt sowie von mehreren anderen Societies aufgenommen, von Harry S. Truman wurde sie zum Ratsmitglied der National Science Foundation ernannt. Nachdem sie jahrzentelang gegen den Widerstand von Entscheidern unbeirrt mit ihrem Mann zusammengearbeitet hatte, wurde ihr nun zwischen 1948 und 1955 die Ehrendoktorwürde an fünf Universitäten verliehen – an der Boston University, am Smith College, an der Yale University, an der Columbia University und an der University of Rochester. Insgesamt gewann sie, zum Teil gemeinsam mit ihrem Mann, sechs hochdotierte wissenschaftliche Preise. Sie arbeitete noch weitere zehn mit immer schlechterer Gesundheit, bis sie am 26. Oktober 1957 an der Myelosklerose verstarb.

1998 wurde Gerty Cori in die National Women’s Hall of Fame aufgenommen. Das Labor an der Washington University, in dem sie gearbeitet hatte, wurde 2004 von der American Chemical Society (deren Mitglied sie war) zur Historic Landmark erklärt. Vier Jahre später brachte der US Postal Service eine 41-cent-Briefmarke ihr zu Ehren heraus. Krater auf dem Mond und der Venus sind nach ihr benannt und noch 2015 taufte das US Department of Energy den Hochleistungrechner im Berkeley Lab nach ihr, der als fünfter in der Liste der 500 leistungsfähigsten Computer rangiert.

Die Website des Nobelpreises führt selbstverständlich ihre Biografie (Link Englisch).

*

Ebenfalls diese Woche

12. August 1898: Maria Klenova (Link Englisch)
Als Begründerin der russischen Meeresgeologie erforschte sie beinahe dreißig Jahre lang die Polarregionen und war die erste Frau, die vor Ort in der Antarktis arbeitete.

12. August 1919: Margaret Burbidge
Diese amerikanische Astronomin tauchte bereits im Beitrag über Vera Rubin auf; die erste weibliche Direktorin des Royal Greenwich Observatory forschte zu Quasaren und wie Rubin zur Rotation von Galaxien.

15. August 1892: Kathleen Curtis (Link Englisch)
Die neuseeländische Mykologin begründete die Pflanzenpathologie in ihrer Heimat; ihre Doktorarbeit schrieb sie über Kartoffelkrebs und sie beschrieb 1926 erstmalig einen Bovisten, der endemisch in Tasmanien und Neuseeland auftritt und heute vom Aussterben bedroht ist, den Claustula fischeri (Link Englisch).

30/2020: Vera Rubin, 23. Juli 1928

frauenfiguren vera rubin
vlnr: Anne Kinney, NASA Goddard Space Flight Center, Greenbelt, Md.; Vera Rubin, Dept. of Terrestrial Magnetism, Carnegie Institute of Washington; Nancy Grace Roman Retired NASA Goddard; Kerri Cahoy, NASA Ames Research Center, Moffett Field, Calif.; Randi Ludwig, University of Texas, Austin, Texas. Photo taken during the NASA Sponsors Women in Astronomy and Space Science 2009 Conference, held at the University of Maryland University College (UMUC) Inn and Conference Center, Adelphi, Md, October 21-23 2009
By NASA

Vera Rubin kam in Philadelphia, Pennsylvania zur Welt als Tochter zweier jüdischer Immigranten: Ihr Vater stammte aus Vilnius (damals Polen, heute Litauen) ihre Mutter aus Bessarabien (in der Region des heutigen Moldavien und der Ukraine). Sie zeigte schon mit 10 Jahren Interesse an der Astronomie und beobachtete mit einem selbstgebauten Teleskop aus Pappe Meteoren.

Nachdem sie 1944 die High School abgeschlossen hatte, beschloss sie, am Vassar College zu studieren, weil ihr Vorbild Maria Mitchell dort Professorin gewesen war. Vier Jahre später machte sie dort mit 20 Jahren ihren Bachelor of Science als einzige Absolventin in der Astronomie. Sie wollte sich anschließend in Princeton einschreiben, doch Frauen waren dort damals – und noch für weitere 27 Jahre – nicht zugelassen. Einer Einladung von Harvard folgte Rubin nicht, sondern schrieb sich an der Cornell University in New York ein, da ihr Ehemann Robert dort ebenfalls studierte.

An der Cornell University untersuchte Vera Rubin für ihre Masterarbeit die Bewegungen von 109 Galaxien; dabei war sie eine der ersten Menschen, die Abweichungen von der Hubble-Konstante beobachtete. Kurz gefasst beschreibt die Hubble-Konstante, oder heute: der Hubble-Parameter, die Rate der Expansion des Universums. Durch ihre Beobachtungen kam sie zunächst zu der These, dass es in der Expansion eine Orbitalbewegung des Universums um einen Pol gäbe – eine These, die widerlegt wurde. Doch Rubins Ableitung aus ihren Ergebnissen, dass die Galaxien sich grundsätzlich im Universum fortbewegen, stellte sich als wahr heraus und war Grundlage für weitere Forschungen in dieser Hinsicht. Rubin lieferte mit den Ergebnissen auch einen Beweis für eine Supergalaktische Ebene, die wiederum die Basis bildet für das Supergalaktische Koordinatensystem.

Vera Rubin schloss mit ihrer Forschungsarbeit 1951 ihren Mastertitel ab. Sie trat auch den Kampf an, ihre als kontrovers betrachteten Ergebnisse auch bei der American Astronomical Society zu präsentieren, obwohl sie zu diesem Zeitpunkt ein Kind hatte und mit dem zweiten schwanger war. Sie wurde jedoch abgelehnt, ihre Arbeit wurde übersehen.

Weder von diesem Rückschlag noch vom Elterndasein ließ sich Rubin davon abhalten, ihre Karriere fortzusetzen. Sie schrieb sich für ein Doktorandenstudium an der Georgetown University ein, als Doktorvater betreute sie George Gamow. In den drei Jahren, in denen sie an ihrer Dissertation schrieb, wurde ihr unter anderem einmal untersagt, ihren Doktorvater in seinem Büro zu treffen, weil Frauen diesen Bereich der Universität nicht betreten durften. Ihren Doktortitel erlangte sie 1954 mit einer Dissertation, in der sie die Theorie aufstellte, dass Galaxien in Clustern oder Haufen auftreten, statt zufällig über das Universum verteilt zu sein. Auch dieser Gedanke Rubin war zu diesem Zeitpunkt kontrovers zum allgemeinen Wissensstand und wurde in den folgenden 20 Jahren nicht weiter verfolgt.

Nach ihrer Promotion arbeitete Rubin in den folgenden elf Jahren an diversen Instituten als Lehrerin, Forschungsastronomin und Assistenzprofessorin; da sie auch insgesamt vier Kinder hatte, übte sie große Teile ihres Berufs von zu Hause aus. 1963 arbeitete sie für ein Jahr mit Geoffrey und Margaret Burbidge zusammen an der Erforschung der Galaxienrotation am McDonald Observatory in Texas. Mit Burbidge sollte sie auch danach der allgemeine politische Einsatz für Frauen in der Wissenschaft verbinden. 1965 wurde Rubin Angestellte der Carnegie Institution of Washington, heute Carnegie Institution of Science. Im Rahmen dieser Anstellung ersuchte sie auch um die Möglichkeit, am Palomar Observatory in San Diego zu arbeiten. Dort angekommen, musste sie feststellen, dass es vor Ort keine „facilities“, also Schlaf- und Sanitärräume für Frauen gab. Vera Rubin schnitt ein Stück Papier in Form eines Rocks aus, klebte dieses über eine der ‚männlichen‘ Türschilder und schuf so die Verhältnisse, die ihr einen Aufenthalt erleichtern würden (so schildert es dieser Artikel in The Atlantic).

Ebenfalls bei ihrer Tätigkeit an der Carnegie Institution traf sie auf Kent Ford, der astronomische Instrumente herstellte. Unter anderem hatte er ein optisches Spektrometer gebaut, das die Spektren jener Himmelskörper optisch verstärkte, die bisher zu dunkel waren, um sie zu deuten. Mit den Instrumenten von Ford machte Rubin unter anderem an der Andromedagalaxie unter anderem eine Beobachtung, die als Rubin-Ford-Effekt (Link Englisch) bekannt wurde: Eine Anisotropie in der Expansion des Universums, beobachtet allerdings an einer begrenzten Anzahl Galaxien und heute zu einem nur augenscheinlichen, nicht tatsächlichen Phänomen erklärt. (Eine Anisotropie ist eine Eigenschaft, die von der Richtung einer Bewegung abhängig ist.) Die Ergebnisse ihrer Forschungen wurden jedoch wieder einmal als zu kontrovers von der wissenschaftlichen Gemeinschaft abgelehnt. 1976 veröffentlichte Rubin eine Arbeit, in dem sie die Theorie einer Pekuliargeschwindigkeit nicht nur für Sterne, sondern auch für Galaxien aufstellte, die anfangs abgelehnt, aber heute als ‚large streaming scale‚ akzeptiert ist.

frauenfiguren rotationskurve
Tatsächliche Rotationskurve der Spiralgalaxie Messier 33 (gelbe und blaue Punkte mit Fehlerbalken) und eine aufgrund der Verteilung sichtbarer Materie vorhergesagte (graue Linie).
Von Mario De Leo – Eigenes Werk, CC BY-SA 4.0

Für eine kurze Zeit befassten sich Rubin und Ford auch mit Quasaren, die gerade erst entdeckt worden waren. Sie wandte sich jedoch lieber einem Forschungsbereich zu, in dem sie hoffte, weniger Ablehnung zu erfahren, und untersuchte schließlich die Rotation von Galaxien und ihren Außenbezirken. Sie beobachtete hierbei flache Rotationskurven im Gegensatz zu den wieder abfallenden Kurven, die nach optisch erfassbaren Tatsachen zu erwarten waren. In den Außenbezirken müsste sich eine Galaxie nach dieser Erwartung langsamer drehen – stattdessen beobachtete Rubin, dass sich die äußeren Arem von Spiralgalaxien ebenso schnell um den Mittelpunkt drehen wie die inneren Bereiche. Außerdem drehen sich die Galaxien so schnell, dass sie auseinanderfliegen müssten, wenn der einzige Zusammenhalt, den sie haben, die Schwerkraft ihrer Sterne wäre. Diese beiden Beobachtungen ließen Vera Rubin schließen, dass diese Galaxien Dunkle Materie enthalten müssen und von einem Halo, einem ‚Heiligenschein‘ aus Dunkler Materie umgeben sein müssen. (Der Artikel zu Dunkler Materie enthält auch die schöne Videodatei, welche Bewegung ohne Dunkle Materie zu erwarten wäre und welche tatsächlich vorgefunden wird.) Nach ihren Berechnungen müssten Galaxien etwa fünf bis zehn Mal so viel Dunkle wie gewöhnliche Materie enthalten. Mit ihren Forschungsergebnissen lieferte sie die erste überzeugende Hinweise für diese Theorie, die in den 1930ern erstmals von zwei Astronomen, Jan Hendrik Oort und Fritz Zwicky postuliert wurde.

Später sollte Vera Rubins These durch die Entdeckung der kosmischen Hintergrundstrahlung und des Gravitationslinseneffektes bestätigt werden. Ihre ebenfalls auf diesen Ergebnissen basierende Theorie über nicht-Newtonsche Schwerkraft, die auf Galaxien wirkt, ist nicht wissenschaftlich akzeptiert oder bewiesen. Zur gleichen Zeit erforschte Vera Rubin das Phänomen des Gegenrotation in Galaxien und lieferte erste Nachweise dafür, dass Galaxien durch ihre Bewegung im Universum fusionieren, sowie zum Prozess, mit welchem Galaxien entstehen.

1981 wurde Vera Rubin zum Mitglied der National Academy of Sciences gewählt, als zweite weibliche Astronomin nach ihrer Kollegin Margaret Burbidge. 1996 wurde ihr die Goldmedaille der Royal Astronomical Society verliehen – als zweiter Frau, 168 Jahre nach der ersten Frau, der diese Ehrung zuteil wurde: Caroline Herschel. Das Dicovery Magazin nannte sie 2002 als eine der 50 wichtigsten Frauen in der Wissenschaft. Sie gewann nie einen Nobelpreis, was die Physikerin Lisa Randall und Astronomin Emily Levesque (Link Englisch) für eine Nachlässigkeit halten. Vera Rubin wird von jüngeren Kolleginnen wie Sandra M. Faber und Neta Bahcall (Link Englisch) als wichtiger Einfluss für ihre Wissenschaftskarrieren genannt, als eine derjenigen, die den Weg vorgaben für Frauen in der Wissenschaft, ein Leuchtfeuer für diejenigen, die Familie und eine Karriere in der Astronomie wollten. Rebecca Oppenheimer (Link Englisch), eine der Kuratorinnen für Astrophysik am American Museum of Natural History in New York, nennt Rubins Mentorinnenschaft als entscheidend für ihre Karriere.

Vera Rubin hatte vier Kinder, denen sie nach deren Aussagen vorlebte, dass „ein Leben in der Wissenschaft Spaß mache und erstrebenswert sei“ (Quelle: Wiki), was alle vier veranlasste, ebenfalls Wissenschaftler:innen zu werden. Gemeinsam mit ihrer Kollegin Burbidge setzte sich Rubin für die Repräsentation von Frauen in wissenschaftlichen Institutionen ein, die wenigen weiblichen Mitglieder in der National Academy of Science nannte sie „das Traurigste in ihrem Leben“. Sie starb am 25. Dezember 2016 an Komplikationen ihrer Demenzerkrankung.

Die Carnegie Institution of Science rief ihr zu Ehren ein Forschungsstipendium für Postdoktoranden ins Leben; die Division on Dynamical Astronomy der American Astronomical Society verleiht den Vera Rubin Early Career Prize. Im Dezember 2019 wurde das Large Synoptic Survey Telescope, das auf einem Gipfel des Cerro Panchon in Chile gebaut wird, als Vera C. Rubin Observatory umbenannt. Es soll im kommenden Jahr 2021 first light haben, endgültig fertiggestellt wird es nach Plan 2022.

*

Ebenfalls diese Woche

22. Juli 1776: Etheldred Benett
Der britischen Paläontologin wurde von Zar Nikolaus I. die Ehrendoktorwürde der Universität St. Petersburg verliehen; er wusste wohl nicht, dass es sich bei ihr um eine Frau handelte.

25. Juli 1920: Rosalind Franklin
Quasi das Postergirl des Matilda-Effekts; von ihr nutzten Watson und Crick ungefragt und unauthorisiert Röntgenstrukturanalysen, die ihnen zur Entschlüsselung der DNA-Struktur verhalfen. Jahrelang wurde in wissenschaftlichen und biografischen Texten herablassend mit ihr umgegangen.

25. Juli 1956: Frances H. Arnold
Für ihre Pionierarbeit auf dem Gebiet der Gerichteten Evolution wurde der Biochemikerin 2018 der Nobelpreis für Chemie verliehen.

26/2020: Maria Goeppert-Mayer, 28. Juni 1906

Maria Goeppert wurde in Katowice, damals Preußen, in eine Familie von Professoren geboren. Als sie 10 Jahre alt war, zog sie mit ihren Eltern nach Göttingen. Dort besuchte sie eine höhere Schule, die speziell Mädchen für ein Universitätsstudium vorbereiten sollte; mit 17, ein Jahr früher als ihre Komiliton:innen, machte sie als eines von drei oder vier Mädchen das Abitur.

Zunächst studierte sie an der Universität Göttingen Mathematik, zu dieser Zeit um 1924 müsste sie auch Emmy Noether dort angetroffen haben. Nach drei Jahren Studium wechselte Goeppert jedoch zur Physik, in der sie nach weiteren drei Jahren ihre Dissertation über die Theorie der Zwei-Photonen-Absorption schrieb. Diese Theorie, dass ein Molekül oder Atom zur gleichen Zeit (innerhalb von 0,1 Femtosekunde) zwei Photonen aufnehmen kann und dabei in einen energetisch angeregten Zustand übergeht, konnte zu dieser Zeit nicht experimentell nachgewiesen werden. Dieses Ereignis ist extrem unwahrscheinlich: Die Absorption eines Photons in einem Molekül oder Atom geschieht in etwa einmal pro Sekunde unter guten Bedingungen, das heißt bei hoher Lichteinstrahlung. Die gleichzeitige Absorption zweier Photonen tritt hingegen unter den gleichen Bedingungen nur alle 10 Millionen Jahre auf. Erst 1961 konnte Goepperts Theorie dank der Erfindung des Lasers nachgewiesen werden, die Einheit, in der die Wahrscheinlichkeit einer Zwei-Photonen-Absorption gemessen wird, heißt ihr zu Ehren GM (Goeppert-Mayer). Ihre Prüfer im Rigorosum waren Max Born, James Franck und Adolf Windaus, alles drei zu diesem Zeitpunkt oder spätere Nobelpreisträger. Eugene Wigner, ebenfalls Nobelpreisträger, bezeichnete ihre Arbeit später als „Meisterwerk der Klarheit und Greifbarkeit“.

Im gleichen Jahr, in dem sie ihren Doktortitel errang, hatte sie auch Joseph Edward Mayer geheiratet, einen Fellow der Rockefeller Foundation und Assistent von James Franck. Mit ihm zog sie nach ihrer Promotion in die USA, wo Mayer als außerordentlicher Professor an der Johns Hopkins University lehrte. Goeppert-Mayer konnte dort keine Anstellung finden, denn die Hochschule hatte strenge Nepotismus-Regeln, die die gleichzeitige Beschäftigung von Ehepaaren untersagten. Diese waren ursprünglich eingerichtet worden, um Gönnerschaft zu unterbinden, doch inzwischen hielten sie hauptsächlich die Ehefrauen der Professoren von beruflicher Tätigkeit auf dem Campus ab. Goeppert-Mayer konnte sich schließlich gegen sehr kleines Gehalt im Fachbereich für Physik an der deutschen Korrespondenz beteiligen, so hatte sie auch Zugang zu den Laboren. In dieser Zeit arbeitete sie mit Karl Herzfeld an seinen Forschungen zur Quantenmechanik, sie unterrichtete auch unentgeltlich und schrieb eine Arbeit über doppelten Betazerfall. Sie kehrte bis 1933 noch dreimal nach Göttingen zurück, unter anderem um dort mit Max Born an einem Artikel für das Handbuch der Physik zu arbeiten. 1933 verloren Born und James Franck aufgrund der Judenverfolgung unter der faschistischen Regierung Deutschlands ihre Stellen an der Göttinger Universität, James Franck folgte seinem ehemaligen Assistenten nach Baltimore.

1937 wurde Mayer allerdings von der Johns Hopkins Universität entlassen, die Gründe dafür sind unklar. Mayer vermutete Misogynie, nämlich dass der Dekan es nicht gerne sähe, wie frei Mayer seiner Frau Zugang zu den Laboren gewährte. Herzfeld stimmte ihm zu, möglicherweise fühle sich aber auch das amerikanische Kollegium von „zu vielen Deutschen“ (das Ehepaar Goeppert-Mayer, Herzfeld und Franck) überrannt. Es soll auch Beschwerden über die Inhalte des Chemie-Unterrichts gegeben haben, den Goeppert-Mayer hielt: Sie spreche zu viel über moderne Physik. Goeppert-Mayer lehrte noch bis 1939 in Baltimore, dann wechselte das Ehepaar gemeinsam an die Columbia University in New York. Joseph Mayer konnte dort als Professor lehren, Maria Goeppert-Mayer bekam hier zwar ein eigenes Büro, doch für ihre Tätigkeit an der Fakultät wiederum kein Gehalt.

An der Columbia University freundete sich Goeppert-Mayer mit dem Chemiker Harold Urey und dem Physiker Enrico Fermi an und schloss sich deren Forschungen an, zu den Valenzelektronen der bis dahin noch unentdeckten transuranischen Elementen. Die Anzahl der Valenzelektronen, das heißt der Elektronen auf der äußersten Schale eines Elements, die an chemischen Verbindungen beteiligt sein können, bestimmen die Zugehörigkeit zu den unterschiedlichen Gruppen des Periodensystems und lassen Vermutungen über ähnliche chemikalische Eigenschaften zu. Basierend auf dem Thomas-Fermi-Modell, das die Elektronenhülle wie eine Gaswolke interpretiert, stellte Goeppert-Mayer die Voraussage auf, dass die Elemente, die im Periodensystem hinter dem Uran folgen müssten, zur Gruppe der Metalle der Seltenen Erden gehören würden. Diese Voraussage sollte sich als wahr herausstellen.

1941 wurde Maria Goeppert-Mayer zur Fellow der American Physical Society und im Dezember dieses Jahres trat sie ihre erste bezahlte Lehrtätigkeit am Sarah Lawrence College an. Nachdem die USA in den Zweiten Weltkrieg eingetreten waren, schloss sie sich im Folgejahr in Teilzeit dem Manhattan-Projekt an. Ihre Aufgabe wurde es, einen Weg zu finden, das Isotop 235U, einen wichtigen Spaltstoff, in natürlichem Uran auszusondern. Dafür untersuchte Goeppert-Mayer die chemischen und thermodynamischen Eigenschaften von Uranhexafluorid (Uran(VI)-fluorid), einer Verbindung von Uran und Fluor. Sie erwog die Möglichkeit, das gewünschte Isotop mit Hilfe einer photochemischen Reaktion aus dem Stoff auszufällen, doch dies war zu dem Zeitpunkt noch nicht praktikabel; auch hier wurde die Erfindung des Lasers notwendig, um Goeppert-Mayers Theorien in die Praxis umzusetzen.

Ihr Freund Edward Teller holte sie auch kurzzeitig ins Team seines Opacity Project, das die Erschaffung einer Superbombe (Link Englisch) anstrebte. Ihr Mann wurde an die Front im Pazifik berufen, und Goeppert-Mayer beschloss, die beiden Kinder in New York zu lassen und mit Teller in Los Alamo am Project Y zu arbeiten.

Nach dem Ende des Krieges wurde Joseph Mayer Professor für Chemie an der University of Chicago, Maria Goeppert-Mayer wurde von der Hochschule als freiwillige außerordentliche Professorin eingestellt. Teller folgte ihr nach Illinois, um die Entwicklung thermonuklearer Waffen voranzutreiben. Als ihr eine Teilzeitstelle am Argonne National Laboratory angeboten wurde, als leitende Physikerin in der Abteilung für theoretische Physik, antwortete sie erstaunlicherweise: „Ich verstehe nichts von Kernphysik!“ Sie trat die Stelle jedoch an. Außerdem programmierte sie den ENIAC des Aberdeen Proving Ground auf eine bestimmte Vorgehensweise für Schnelle Brüter.

Ihre wichtigeste, erfolgreichste Arbeit leistete Goeppert-Mayer trotz dieser vielseitigen Einsätze in den 1940ern. Während sie an der University of Chicago und dem Argonne angestellt war, entwickelte sie ein mathematisches Modell für den Aufbau des Schalenmodells, das sie 1950 veröffentlichte. Sie erklärte, warum eine bestimmte Anzahl Nukleone (Protonen und Neutronen) in Atomkernen besonders häufig vorkamen und besonders stabil sind. Diese Zahlen nannte Eugene Wigner die ‚Magischen Zahlen‚, die Reihe der „stabilen“ Protonen- und Neutronen-Anzahlen lautet 2, 8, 20, 28, 50, 82 und 126. Das Schalenmodell war für die Elektronen-aufenthaltswahrscheinlichkeitsräume des Atoms bereits erfolgreich, doch vom Atomkern bestand zu diesem Zeitpunkt noch ein anderes Modell, welches jedoch nicht die Inseln der Stabilität in den Elementen erklärte. Im Gespräch mit Enrico Fermi stellte dieser Goeppert-Mayer die Frage, ob es einen Hinweis auf Spin-Bahn-Kopplung gäbe – einen Zusammenhang des Spin, also der Eigendrehung eines Teilchens, und seiner Bahn, also seiner Bewegung innerhalb des Atoms, der sich in der Stärke der Wechselwirkung des Teilchens bemerkbar macht. Diese Kopplung war für Elektronen bekannt, doch angestoßen von Fermis Frage stellte Goeppert-Mayer die Theorie auf, dass dieser Effekt auch im Atomkern wirke und konnte so die Bedeutung der ‚magischen Zahlen‘ in der Kernphysik erklären. Sie erläuterte es kurz und anschaulich wie folgt:

Denken Sie an einen Raum voller Walzertänzer:innen. Nehmen wir an, sie durchtanzen den Raum in Kreisen, jeder Kreis umschlossen von einem weiteren Kreis. Nun stellen Sie sich vor, Sie könnten zweimal so viele Tänzer:innen in einem Kreis unterbringen, indem Sie ein Paar mit und das andere Paar entgegen dem Uhrzeigersinn tanzen lassen. Nun bringen Sie noch weitere Variationen ein; alle Paare drehen sich um sich selbst wie Kreisel, während sie durch den Raum kreisen, jedes Paar dreht sich also um sich selbst (twirling) und durch den Raum (circling). Aber nur einige von denen, die gegen den Uhrzeigersinn durch den Raum tanzen, drehen sich auch im Uhrzeigersinn um sich selbst. Die anderen drehen sich im Uhrzeigersinn um sich selbst, während sie gegen den Uhrzeigersinn durch den Raum tanzen. Das gleiche ist wahr für die, die im Uhrzeigersinn durch den Raum tanzen: Einige drehen sich im Uhrzeigersinn um sich selbst, andere dagegen.

Übersetzt nach dem Abschnitt ‚Nuclear shell modell‘ des englischen Wikipediabeitrags

Zum gleichen Schluss waren zeitgleich die Physiker Otto Haxel, Hans D. Jensen und Hans E. Suess in Hamburg gekommen; Goeppert-Mayers Arbeit wurde zur Prüfung im Februar 1949 eingereicht, die der Hamburger Forscher im erst im April. Als Goeppert-Mayer in Juni 1949 die Ankündigung der Ergebnisse ihrer Kollegen las, versuchte sie noch, ihre Veröffentlichung zu verschieben, damit beide Arbeiten nebeneinander erscheinen könnten, doch dies ließ sich nicht mehr einrichten. So wurde zuerst Goeppert-Mayer als die Entdeckerin des Schalenmodells für den Atomkern bekannt. Es entstand jedoch ein gutes kollegiales Verhältnis zwischen Goeppert-Mayer und Jensen und die beiden brachten 1950 gemeinsam ein Buch zu ihrer Theorie heraus.

In den 1950er Jahren wurde Maria Goeppert-Mayer Mitglied der Heidelberger Akademie der Wissenschaften und der National Academy of Sciences, doch erst 1960 wurde sie endlich vollwertiges Mitglied einer Fakultät, als sie den Lehrstuhl für Physik an der University of California übernahm. Bereits kurz darauf erlitt sie einen Schlaganfall, der sie jedoch nicht von der Arbeit abhalten sollte. 1963 erhielt sie gemeinsam mit Hans D. Jensen eine Hälfte des Nobelpreises für Physik, die andere Hälfte erhielt Eugene Wigner. Goeppert-Mayer war die zweite weibliche Gewinnerin dieses Preises nach Marie Curie, 60 Jahre zuvor. Zu dieser Errungenschaft titelte damals die San Diego Tribune: ‚S.D. Mother Wins Nobel Physics Prize‘ (‚Mutter aus San Diego gewinnt Physik Nobelpreis‘). Hierzu bezog die Nachfolgepublikation The San Diego Union-Tribune im Oktober 2018 Stellung, anlässlich der Verleihung des Nobelpreises für Physik an die dritte Frau überhaupt, Donna Strickland, 55 Jahre nach Goeppert-Mayer.

Zwei Jahre später wurde sie zum Fellow der American Academy of Arts and Sciences. 1971 erlitt sie einen Schlaganfall, in dessen Folge sie ein Jahr lang im Koma lag, bis sie am 20. Februar 1972 verstarb. Die American Physical Society rief 1986 den Maria Goeppert-Mayer Award ins Leben, der jugnen Physikerinnen verliehen wird. Gewinnerinnen müssen einen Doktortitel innehaben, sie erhalten einen Geldbetrag und die Möglichkeit, an vier größeren Institutionen Vorträge über ihre Arbeit zu halten. Auch das Argonne National Laboratory verleiht jedes Jahr im Namen Goeppert-Mayers einen Preis an herausragende Wissenschaftlerinnen, ihre letzte Universität in Kalifornien hält ein jährliches Symposium in ihrem Namen, in dem Wissenschaftlerinnen zusammenkommen. Ein Krater auf der Venus von 35 Kilometer Durchmesser ist nach Maria Goeppert-Mayer benannt.

*

Ebenfalls diese Woche

22. Juni 1939: Ada Yonath
Über diese Chemikerin schrieb ich im Juni 2018.

23. Juni 1871: Jantine Tammes
Die Leidtragende des Matilda-Effektes trug entscheidende Erkenntnisse zur Pflanzengenetik bei, die jedoch ihrem männlichen Kollegen zugeschrieben wurden.

23. Juni 1951: Maria Klawe
Die amerikanische Informatikerin leitet seit 2006 als erste Frau das Harvey Mudd College in Kalifornien.

26. Juni 1862: Ella Church Strobell (Link Englisch)
Gemeinsam mit ihrer Kollegin Katharine Foot trug die Zellbiologin mit Fotografien zum besseren Verständnis der Chromosomen und ihrer Funktion bei.

8/2020: Agnes Yewande Savage, 21. Februar 1906

Der Vater von Agnes Yewande Savage (Link Englisch) war Richard Akinwande Savage, ein nigerianischer Arzt mit Wurzeln bei den Egba, einer Subgruppe der Yoruba, und den Krio. Ihre Mutter war eine schottische Arbeiterin. Ihr älterer Bruder war Richard Gabriel Akinwande Savage. Agnes Yewande Savage ging zunächst an das Royal College of Music in London, erhielt dann ein Stipendium am George Watson’s College in Edinburgh und studierte schließlich an der University of Edinburgh Medizin. In ihrem vierten Studienjahr erhielt sie einen Preis im Fach Hautkrankheiten und eine Medaille im Gebiet der Forensik. Mit 23 Jahren machte sie als erste Frau afrikanischer Abstammung ihren Doktor der Medizin (an einer Universität des nordwestlich-christlichen Kulturkreises).

Nachdem Universitätsabschluss begann sie, als Junior Medical Officer für den Colonial Service an der Goldküste, im heutigen Ghana, zu arbeiten. Sie wurde hier im Vergleich zu ihren männlichen Kollegen benachteiligt, dies änderte sich erst, als sie 1931 Schulärztin und Lehrerin an der Achimota Schule (Link Englisch) in Accra wurde. Der Direktor der Schule setzte sich dafür ein, dass sie bessere vertragliche Bedingungen erhielt als zuvor. Während der vier Jahre, die Savage an der Schule arbeitete, lernte sie auch Susan De Graft-Jonson kennen, die später ebenfalls an der University of Edinburgh studieren sollte und Ghanas erste Ärztin wurde.

Achimota verließ Savage nach vier Jahren, um wieder in den medizinischen Dienst des Colonial Service einzutreten. Unter wesentlich besseren Voraussetzungen als zuvor war sie nun verantwortlich für die Säuglingskliniken des Korle-Bu Krankenhauses in Accra. Sie wurde die Leitungsassistentin der Geburtsabteilung des Krnakenhauses und Aufseherin des Schwesternheims. Schließlich betreute sie die Einrichtung der Schwesternschule Korle-Bu Nurses Training College (Link Englisch), an der auch eine Abteilung nach ihr benannt wurde.

Mit 41 Jahren setzte sie sich aufgrund von psychischer und körperlicher Belastung zur Ruhe, ging zurück nach Schottland und zog ihre Nichte und ihren Neffen groß. Mit 58 Jahren starb sie 1964 an den Folgen eines Schlaganfalls.

*

Ebenfalls diese Woche

19. Februar 1861: Lilian Jane Gould (Link Englisch)
Sie war die erste Frau, die als Mitglied in die Linnean Society of London aufgenommen wurde. Bekannt wurde die Biologin vor allem für ihre Studien zu Mikroorganismen in Spirituosen.

19. Februar 1952: Marcia McNutt
Die US-amerikanische Geophysikerin war amtierende Direktorin des United States Geological Survey und wissenschaftliche Beraterin des US-Innenministeriums, außerdem von 2013-2016 die erste weibliche Editor in Chief der 1880 ins Leben gerufenen Zeitschrift Science und 2016 erste weibliche Präsidentin der National Academy of Sciences.

23. Februar 1945: Svetlana Iwanowna Gerassimenko
Gemeinsam mit ihrem Kollegen Klym Tschurjumow entdeckte die tadschikische Astronomin den kurzperiodischen Kometen 67P, der ihrer beider Namen trägt.

4/2020: Gertrude B. Elion, 23. Januar 1918

Die Eltern von Gertrude B. Elion waren als Kinder in die USA eingewandert, ihre Mutter aus Polen, ihr Vater stammte aus einer jüdischen Familie in Litauen. Er war Zahnarzt in New York, verlor jedoch sein gesamtes Vermögen am Schwarzen Donnerstag, den 24. Oktober 1929 (dazu gehört in der Folge auch der Schwarze Dienstag, der 29.Oktober; dass dieses Ereignis in Deutschland als Schwarzer Freitag bekannt ist, liegt daran, dass durch die Zeitverschiebung der Absturz des Börsenkurses in unseren Breiten in den frühen Morgenstunden des Freitag stattfand). Doch da Getrude hervorragende Noten hatte, konnte sie ohne Studiengebühren am Hunter College Chemie studieren. Sie hatte bereits mit 15 beschlossen, in der Krebsforschung zu arbeiten, nachdem ihr Großvater an Krebs gestorben war. 1937, mit 19 Jahren, machte sie als einzige Frau vor 1939 ihren Bachelor an der New Yorker Universität. Da sie keine Anstellung als Chemikerin fand, schloss sie ein Studium zum Master of Sciences an, während sie tagsüber als High-School-Lehrerin arbeitete. Später äußerte sie die Vermutung, dass sie als junges Mädchen überhaupt nur eine Hochschulbildung genießen konnte, weil sie dank guter Noten umsonst studieren konnte – sie bewarb sich fünfzehn Male um finanzielle Unterstützung, doch alle wurden aufgrund ihres Geschlechtes abgelehnt. Sie hatte sich bereits in einer Schule für Sekretärinen eingeschrieben und diese sechs Wochen besucht, bevor sie eine bezahlte Stelle fand. (Quelle: Wikipedia) 1941 machte sie ihren Abschluss als M.Sc., im gleichen Jahr verlor sie ihren Verlobten durch eine bakterielle Endokarditis, eine Herzentzündung. Nach eigener Aussage verstärkte dies ihren Wunsch, Pharmakologin zu werden.

Da sie keine Arbeit in der akademischen Forschung fand, arbeitete sie zunächst in der Lebensmittelforschung, namentlich bei der Supermarktkette A&P; dort prüfte sie als Qualitätsmanager den Säuregehalt der Gurken und Eidotter, die in Mayonaise verarbeitet wurden. Erst drei Jahre später, 1944, konnte sie bei Burroughs Wellcome & Company (heute GlaxoSmithKline) als Laborassistentin tätig werden. Sie arbeitete hier mit dem Biochemiker George Herbert Hitchings zusammen an „rationaler Wirkstoffplanung“: Statt sich auf trial & error zu verlassen, also zu experimentieren und aus den gescheiterten Experimenten zu lernen, untersuchte das Team aus Hitchings, Elion und James W. Black die Unterschiede zwischen menschlichen Zellen und Krankheitserregern, um von vorneherein Wirkstoffe herzustellen, die nur die Erreger zerstörten und nicht gesundes menschliches Gewebe angriffen.

In ihrer Zeit bei Burroughs Wellcome & Company, zwischen 1944 und 1983, war sie an der Entwicklung diverser Medikamente beteiltigt, etwa Zytostatika zur Behandlung von Leukämie, einem Mittel zur Behandlung von Malaria, und dem ersten Immunsuppressivum, das nach Organtransplantationen zum Einsatz kommt. Besonders hervorzuheben unter Elions Forschungsergebnissen ist jedoch Aciclovir, das bei Infektionen mit Viren der Art Herpes Simplex gegeben wird. Nachdem sie sich bereits als Mitarbeiterin von inzwischen GlaxoSmithKline zur Ruhe gesetzt hatte, war sie auch an der Weiterentwicklung von AZT (Zidovudin) beteiligt, das erste Medikament, das zur Behandlung von AIDS eingesetzt wurde und noch heute zur antiretroviralen Therapie bei HIV1-infizierten Patienten gehört.

1967 wurde sie zur Leiterin der Abteilung für Experimentelle Therapie bei GlaxoSmithKline. Sie machte auch erste Schritte hin zu einem Doktortitel, doch war ihr die praktische Forschung im Unternehmen wichtiger als der akademische Grad, und so promivierte sie nie. Nachdem sie jedoch 1988 gemeinsam mit Hitchings den Nobelpreis für Physiologie und Medizin (für die „Entdeckung zu wichtigen biochemischen Prinzipien der Arzneimitteltherapie“) erhalten hatte, verlieh ihr die Polytechnic University of New York 1989 die Ehrendoktorwürde, neun Jahre später folgte auch die Harvard University.

Die Liste ihrer Auszeichnungen ist lang. Im direkten Anschluss an ihre Pensionierung war sie Präsidentin der American Association for Cancer Research, und im beruflichen Ruhestand forschte sie weiter nach Mitteln gegen HIV und AIDS. Sie war die fünfte weibliche Nobelpreisträgerin für Medizin und die neunte weibliche überhaupt. Sie wurde in den Jahren 1990 und 1991 zum Mitglied der National Academy of Sciences, der National Academy of Medicine und der American Academy of Arts and Sciences, erhielt (unter anderem) die US-amerikanische National Medal of Science und wurde in die National Inventors Hall of Fame und die National Women’s Hall of Fame aufgenommen.

1999 starb sie im Alter von 91 Jahren.

*

Ebenfalls diese Woche

21. Januar 1714: Anna Morandi Manzolini
Ihre ersten zwanzig Wachsmodelle von menschlichen Organen waren die unterschiedlichen Ausbildungen des Uterus während einer Schwangerschaft. Manzolini wurde weltbekannt für ihre exakten Wachsnachbildungen menschlicher Anatomie, später lehrte sie auch als Honorarprofessorin an der Universität Bologna.

22. Januar 1909: Tikvah Alper (Link Englisch)
Die südafrikanische Physikerin studierte 1930-1932 bei Lise Meitner. Sie entdeckte, dass der Scrapie-Erreger, bei uns auch Traberkrankheit, keine Nukleinsäuren enthält und sich nicht durch Strahlung vernichten lässt. Die Schlussfolgerung, dass es sich nicht um einen Virus handeln konnte, führte zur Entwicklung der Prionentheorie.

24. Januar 1904: Berta Karlik
Die österreichische Physikerin wies in den 1940er Jahren die drei Isotope 215, 216 und 218 des Elementes Astat nach.

26. Januar 1839: Rachel Lloyd (Link Englisch)
1886 war sie die erste Amerikanerin, die einen Doktortitel in Chemie erhielt – an der Universität Zürich – und die zweite Frau in diesem Gebiet überhaupt nach Julia Lermontowa.

WEG MIT
§219a!