Schlagwort: biochemie

Yizhi Jane Tao

20. Jhdt.

Yizhi Jane Tao schloss 1988 die First Middle High School in Changsha (Hunan, China) und begann anschließend das Studium der Biologie an der Universität Peking, das sie 1992 mit einem BSc abschloss. Zwei Jahre später setzte sie ihr Studium an der Purdue University in West Lafayette, Indiana (USA) fort.

1999 erlangte Tao ihren Doktortitel in Biowissenschaften an der Purdue University mit einer Arbeit über strukturelle Virologie. Eine dreijährige Postdoc-Tätigkeit absolvierte sie an der Harvard University in Cambridge, Massachusetts (USA) bei Stephen C. Harrison.

Yizhi Jane Tao leitete das Team, das erstmalig die Struktur des Nukleoproteins des Influenza-A-Virus auf atomarer Ebene darstellte. Dieser Teil des Virus ist unter anderem für die Reproduktion des Virus im erkrankten Körper zuständig, und die Darstellung auf atomarer Ebene erschloss den Aufbau, Funktionsweise und somit auch Möglichkeiten, diese Reproduktion zu verhindern. Das Team unter Taos Leitung lieferte also entscheidende Hinweise für die Entwicklung von Grippe-Medikamenten und Impfungen, da es auch nachwies, dass bereits kleinste Änderungen in der Struktur des Nukleoproteins dessen Funktion unterbrach. Die Entdeckung wurde zu ihrer Zeit sogar in den nicht-wissenschaftlichen Medien – wie hier den BBC News – besprochen. Chinesische Medien zählten Tao daraufhin zu den 10 einflussreichsten Chines:innen.

Seit 2009 ist Tao als Professorin für Biochemie und Zellbiologie an der Rice University in Houston, Texas (USA) tätig und erforscht unter anderem Influenza, Hepatitis und Birnaviridae.

Cecilia Hidalgo Tapia

20. Jhdt.

Cecilia Hidalgo Tapia machte 1965 ihren ersten Universitätsabschluss in Biochemie an der Universidad de Chile, vier Jahre später promovierte sie dort. Damit war sie die erste weibliche Doktorin einer Naturwissenschaft an dieser Universität. Ein späteres Post-doc absolvierte sie an den National Institutes of Health in den USA.

Hidalgo Tapia lehrte an verschiedenen Institutionen in Chile, von 1992 bis 1993 erhielt ein ein Guggenheim-Stipendium. Sie forscht zur Regulierung des Calciumgehalts in der Zelle.

2006 gewann sie als erste Frau den nationalen Naturwissenschaftspreis von Chile.

43/2020: Margaret Kivelson, 21. Oktober 1928

Margaret Kivelson kam in New York als Tochter eines Arztes und einer Physikerin zur Welt. Entgegen der Empfehlung eines Onkels, sie solle – als Mädchen – am besten Ernährungsberaterin werden, verfolgte sie schon früh eine Karriere in der Wissenschaft.

Sie studierte von 1946 an Physik am Radcliffe College, das zur ansonsten nur für männliche Studenten zugänglichen Harvard University gehörte. Dort machte sie 1950 mit 22 Jahren ihren Bachelor Sc., zwei Jahre später den Master Sc. 1955 folgte sie ihrem Ehemann nach Los Angeles und begann in Teilzeit bei der RAND Corporation zu arbeiten, einer Denkfabrik zur Beratung der US-amerikanischen Streitkräfte. Hier war sie bis 1971 auf dem Gebiet der Plasmaphysik tätig, nebenher studierte sie weiter auf einen Doktorgrad Physik.

Als Kivelson 1957 ihren PhD erlangte, mit einer Dissertation über „Die Bremsstrahlung von hochenergetischen Elektronen‚, war sie eine von weniger als 2% weiblicher Doktorandinnen. Sie hatte 1955 bereits ein Kind mit ihrem Mann bekommen und wurde nach ihrer Promovierung ein zweites Mal Mutter. Dafür, dass sie ‚trotz Kindern‘ weiterhin wissenschaftlich arbeitete, wurde sie in Kollegenkreisen kritisiert. Sie ließ sich jedoch nicht entmutigen und wurde 1967 neben ihrer Teilzeitarbeit bei der RAND Corporation als Forschungsasstistentin für Geophysik an der UCLA eingestellt. 1971 wurde sie hier Adjunkt Assistenzprofessorin, dafür beendete sie ihre Arbeit in der Denkfabrik.

Als Physikerin war sie daran beteiligt, die Daten der Pioneer-10 sowie der Pioneer-11 auszuwerten, Raumsonden der NASA, die den Jupiter, Saturn und die äußeren Ränder unseres Sonnensystems erforschten. Zu diesem Zeitpunkt begann sich Margaret Kivelson auf dem Gebiet der Magnetosphären zu spezialisieren.

1973 erhielt sie ein einjähriges Guggenheim-Stipendium, was ihr nach eigener Aussage zum ersten Mal das Gefühl gab, als Wissenschaftlerin ernstgenommen zu werden. „Mehr als Geld, gab es mir Status und steigerte mein Selbstbewusstsein entscheidend.“ (Quelle: Wiki Englisch) Sie schlug der NASA schon 1976 vor, die Galileo-Raumsonde mit Magnetometern auszustatten. Nach den Daten der Pioneer-Missionen stellte sie außerdem 1979 die Vermutung auf, dass nicht nur Planeten, sondern auch Monde ein inneres Magnetfeld haben könnten.

Ende der 1970er, Anfang der 1980er Jahre folgten dem Stipendium auch eine Volle Professur sowie der Vorsitz des Fachbereichs für Erd- und Weltraum-Wissenschaften an der UCLA sowie eine Professur am Institute of Geophysics and Planetary Physics (die deutschen und englischen Wiki-Beiträge sind sich hier nicht einig mit den Daten). 1989 ging die Galileo-Mission endlich an den Start und Margaret Kivelson war daraufhin in der Lage, ihre Vermutung zu bestätigen: Sie entdeckte und erforschte das innere Magnetfeld des Jupitermondes Ganymed, außerdem entdekcte sie das innere Magnetfeld des Jupitermondes Io. Im gleichen Zuge der Galileo-Mission konnte Kivelson auch das Magnetfeld des Asteroiden Gaspra erforschen.

2009 wurde Margaret Kivelson Distinguished Professor of Space Physics Emerita der UCLA und sie trat noch eine weitere Professur an der University of Michigan an. In ihrem Arbeitsleben – mindestens bis 2010 war sie noch akademisch und forschend tätig – war sie Autorin und Ko-Autorin von 350 wissenschaftlichen Schriften. 1989 wurde sie als Fellow der American Association for the Advancement of Science gewählt, 1998 in die American Academy of Arts and Sciences aufgenommen, 1999 in die National Academy of Sciences, 2001 in die American Physical Society, 2005 in die American Philosophical Society.

Und noch in diese Jahr 2020 wurde sie als auswärtiges Mitglied der Royal Society aufgenommen.

*

Ebenfalls diese Woche

19. Oktober 1909: Marguerite Perey
Nachdem sie bis 1934 im Radiuminstitut Paris als Assistentin von Marie Curie gearbeitet hatte, entdeckte die Chemikerin und Physikerin 1939 das letzte zu der Zeit unentdeckte, natürlich vorkommende Element Francium, das zu Ehren ihres Herkunftslandes Frankreich seinen Namen erhielt.

20. Oktober 1859: Margaret Jane Benson (Link Englisch)
Sie gehörte zu den ersten Frauen, die zu Mitgliedern der Linnean Society of London gewählt wurden. Als Paläobotanikerin reiste sie gemeinsam mit Ethel Sargant.

20. Oktober 1942: Christiane Nüsslein-Volhard
Die Biologin und Biochemikerin erhielt 1995 den Nobelpreis für Physiologie oder Medizin über die genetische Kontrolle der frühen Embryonalentwicklung.

23. Oktober 1854: Annie Lorrain Smith (Link Englisch)
Mit Lichens (Flechten) schrieb die englische Mykologin ein Lehrbuch, das auf ihrem Fachgebiet jahrzentelang als Standardwerk galt.

23. Oktober 1913: Alma Howard (Link Englisch)
Die englisch-kanadische Strahlenbiologin entwickelte mit ihrem Physikerkollegen Stephen Pelc erstmalig eine zeitlichen Ablauf des Zellkreislaufes.

24. Oktober 1732: Cristina Roccati (Link Englisch)
Als dritte Frau überhaupt erlangte die Physikerin 1751 einen Abschluss an einer italienischen Universität.

Flossie Cohen

* 1925 • † 2004

Flossie Cohen (Link Englisch) kam in Kalkutta zur Welt, über ihr Leben vor dem Studium ist weiter nichts bekannt. Spätestens in den 1940er Jahren kam sie in die USA, zum Studium der Medizin an der University at Buffalo. Hier schloss sie 1950 (mit einem MD?) ab und absolvierte ein praktisches Jahr (bzw. ein Jahr residency, Link Englisch) in der Kinderheilkunde am Brooklyn Jewish Hospital (Link Englisch).

1953 ging sie an das Children’s Hospital of Michigan (Link Englisch) in Detroit. Hier arbeitete sie in der Forschung zur Kinder- und Neugeborenen-Immunologie, sie richtete hierfür das Labor an der Klinik ein sowie den klinischen Dienst für Immunologie und Rheumatologie. Beide Bereiche leitete sie bis zu ihrer Pensionierung. Sie war auch eine Professorin an der Wayne State University School of Medicine (Link Englisch).

Sie war eine Ko-Autorin einer bahnbrechenden Studie, die 1972 veröffentlicht wurde, in der erstmals die biochemischen Hintergründe der Erkrankungen dargestellt wurden, die unter SCID – Severe Combined Immunodeficiency fallen. Dies sind genetisch bedingte Störungen des Immunsystems, bei der verschiedene Lymphozyten, vor allem die T-Lymphotzyten, nur fehlhaft funktionieren oder gar nicht produziert werden. Da dieser Defekt in den blutbildenden Stammzellen vorliegt, ist eine Heilung nur möglich durch eine Stammzellenstransplantation, wie etwa das Knochenmarks. Eine solche wurde ebenfalls von Flossie Cohen erstmals erfolgreich an einem Kind durchgeführt, nur drei Jahre nach der Studie, im Jahr 1975.

Als in den 1980er Jahren die AIDS-Epidemie in den USA um sich griff, befasste sich die Immunologin auch mit dieser Erkrankung. Sie ergriff praktische Schritte, indem sie an ihrem Kinderkrankenhaus eine HIV-Klinik für Betroffene eröffnete, und sie arbeitete an der klinischen Erforschung der Übertragung des HI-Virus von der Mutter auf das ungeborene Kind.

Zwei Jahre, nachdem sie sich 1992 zur Ruhe gesetzt hatte, wurde sie in die Michigan Women’s Hall of Fame (Link Englisch) aufgenommen. Sie starb 2004 mit 79 Jahren.

Da auch die Seite Jewish Women’s Archive Flossie Cohen einen Eintrag widmet, gehe ich davon aus, dass sie einer jüdischen Familien aus Kalkutta entstammt. Die Geschichte der Juden in Indien, speziell Kalkutta, wird in diesem englischen Wikipedia-Beitrag beleuchtet; die erste jüdische Familie, die sich in Kalkutta ansiedelte, trug den Namen Cohen.

38/2020: Ursula Franklin, 16. September 1921

Ursula Franklin kam als Ursula Martius in München zur Welt, als Tochter eines Ethnographen und einer Kunsthistorikerin; der Vater war Protestant, die Mutter Jüdin. Als Deutschland in Polen einmarschierte, versuchten ihre Eltern, sie auf eine englische Schule zu senden, doch es fehlten ihr wenige Tage für zum notwenigen Alter von 18 Jahren, um ein Studentenvisum zu erhalten. Ursula ging stattdessen 1940 nach Berlin, um an der Universität Berlin Physik und Chemie zu studieren. Sie sollte später einmal sagen, dass sie sich für diese Fächer entschied, weil es ihr eine ’suberversive Freude‘ bereitete: „Kein Wort der Autorität konnte die Gesetze der Physik oder die Abläufe der Mathematik verändern“. (Quelle: Wiki Englisch) 1942 wurde sie jedoch als ‚Halbjüdin‚ zwangsexmatrikuliert und in ein Arbeitserziehungslager verbracht, in dem sie dazu eingesetzt wurde, zerbombte Häuser wieder aufzubauen. Ihre Eltern wurden beide in Konzentrationslager deportiert. Erst nach dem Ende des Zweiten Weltkrieges wurde die Familie in Berlin wiedervereint.

Ursula Martius kritisierte bald nach Kriegsende bereits den zweifelhaften Umgang der deutschen Gesellschaft mit dem Faschismus. Sie schrieb 1946 an Otto Hahn über die deutschen Physikerkollegen: „Was die Leute aufbauen, es wird immer eine Kaserne, eine Kaserne, in der ich nicht sehr große Lust habe, zu leben.“ (Quelle: Wiki Deutsch) Im kommenden Jahr griff sie in einem Artikel in der Deutschen Rundschau die Deutsche Physikalische Gesellschaft dafür an, mit den Mitgliedern, die offen und zu ihrem Vorteil Nationalsozialisten waren, nachsichtig zu sein: „Menschen, die mir immer noch in meinen Angstträumen erscheinen, saßen da lebendig und unverändert in den ersten Reihen.“ (Quelle: Quelle: „Physiker zwischen Autonomie und Anpassung: Die Deutsche Physikalische Gesellschaft im Dritten Reich“) Sie nannte neben Hans Otto Kneser, mit dem sie möglicherweise selbst bei ihrer Zwangsexmatrikulierung zu tun hatte, auch Pascual Jordan, Herbert Arthur Stuart und Erich Schumann. Während die DPG darüber diskutierte und abwiegelnd reagierte, machte Ursula Martius ihren Doktortitel in Experimentalphysik an der Technischen Universität Berlin bei Hartmut Kallmann, der selbst von der Judenverfolgung betroffen gewesen war. Sie suchte verständlicherweise nach Möglichkeiten für eine Emigration aus Deutschland, dass sie sowohl im Dritten Reich wie auch in seinem anschließenden apologetischen Umgang mit den verbleibenden Nationalsozialisten enttäuscht hatte. Als sie 1949 eine Postdoktorand:innen-Stelle an der University of Toronto antreten konnte, verließ sie ihr Geburtsland für immer.

Sie heiratete Fred Franklin, der ebenfalls in Deutschland als Jude verfolgt worden war und im Exil in England mit dem Quäkertum in Berührung gekommen war. Gemeinsam mit ihm sollte sie später, auf der Suche nach einer spirituellen Heimat für ihre Familie, ganz zum Quäkertum konvertieren.

Im Jahr ihrer Eheschließung, 1952, begann sie bei der Ontario Research Foundation zu arbeiten, zunächst als Forschungsstipendiatin, später als leitende Wissenschaftlerin. Sie wurde zur Spezialistin für Archäometrie, also der Anwendung naturwissenschaftlicher Methoden zur Klärung von archäologischen Fragen. Zum Beispiel fand Franklin mit Hilfe physikalischer Analysemethoden heraus, dass das schwarze Eisenoxid auf prähistorischen, chinesischen Bronze-Fundstücken kein zufälliges Ergebnis war, sondern mit Absicht auf die „Schwarzen Spiegel“ aufgetragen worden war. Auch die Altersermittlung von Glas gehörte zu ihrer Expertise, so leitete sie eine Studie zu Überresten von Glasperlen, die zur Bezahlung unter anderem im Sklavenhandel verwendet wurden (Link Englisch).

1967 wurde sie an der University of Toronto die erste außerordentliche Professorin für den Fachbereich Metallurgie und Materialwissenschaft. Sechs Jahre später wurde sie volle Professorin. In den 1970er Jahren saß sie einer Studie vor, die die Möglichkeiten des Ressourcenerhalts und des Naturschutzes untersuchte – ihre Arbeit daran lag ihrer späteren Philosophie der Technik zugrunde.

Franklin war auch politisch aktiv, unter anderem in der Organistation Voice of Women (heute Canadian Voice of Women for Peace, Link Englisch). Durch diese war sie an der Baby Tooth Survey (Link Englisch) beteiligt, einer Studie, die anhand der Untersuchung von Milchzähnen menschlicher Kinder die Auswirkungen von Kernwaffenttests untersuchte. Mit Postern in Klassenzimmern wurden Grundschulkinder aufgefordert, ihre ausgefallenen Milchzähne an die Studienausführenden zu senden, dafür bekamen sie einen Anstecker. Schon früh im Laufe der Studie konnten in den Zähnen erhöhte Strontium-90-Werte festgestellt werden; später zeigte die Studie, dass die Milchzähne von Kindern aus dem Jahr 1963 fünfzig Mal mehr Strontium-90 angesammelt hatten als die von Kindern aus den 1950er Jahren. Eine radioaktive Belastung dieser Generation war damit eindeutig nachgewiesen. Die Studie trug dazu bei, die überirdischen Kernwaffentests der USA zu beenden (damit ist Ursula Franklin im Übrigen „Kollegin“ von Katsuko Saruhashi).

Ihre politische Arbeit stand stets im Zeichen feministischen Pazifismus. In den 1980er Jahren nahm sie an einer Kampagne teil, die von der kanadischen Regierung für Kriegsdienstverweigerer das Recht forderte, Einfluss auf die Verwendung der von ihnen gezahlten Steuern zu nehmen – dass diese also nicht für militärische, sondern nur für friedliche Zwecke ausgegeben würden. Die Kampagne wurde leider nicht vom Obersten Gerichtshof angehört und scheiterte. Nachdem sie 1987 emeritierte, schloss sie sich mit einigen anderen weiblichen Fakultätsmitgleidern im Ruhestand zusammen und verklagte die University of Toronto auf Schadensersatz: Die Universität habe sich bereichert, indem sie Frauen mit gleicher Qualifikation wie ihre männlichen Kollegen schlechter bezahlt habe. Im Jahr 2002 erkannte die Universität ihre Schuld an und zahlte an etwa 60 Frauen Ausgleichszahlungen.

Sie blieb auch im akademischen Ruhestand philosophisch und politisch tätig. In einem Artikel On Theology and Peace (Über Theoligie und Frieden) von 1987 schrieb sie: „Frieden ist nicht die Abwesenheit von Krieg, Frieden ist die Abwesenheit von Angst.“ (‚Peace is not the absence of war, peace is the absence of fear‚, Quelle: Wiki Englisch; ein fundamental anderer Ansatz als Ronald Reagans Peace is not the absence of conflict, but the ability to cope with conflict by peaceful means, der vom Konflikt als gegeben ausgeht.) Diese Angst, die den Frieden stört, sei nicht nur Angst vor Krieg und Gewalt, sondern auch die Angst, die durch wirtschaftliche Unsicherheit, Arbeitslosigkeit und drohender Obdachlosigkeit entsteht. Über diese Ängste steuere das, was Franklin als ‚das Bedrohungssytem‘ bezeichnet, die Menschen, indem es gerade wirtschaftliche Unsicherheit und Angst schüre. Frieden, also die Freiheit von Angst, sei laut Franklin allein durch soziale Gerechtigkeit zu erreichen, die Gleichberechtigung/Gleichheit (equality) für alle bringe. Sie deutet an, dass in einer Gesellschaft, die am Konsum orientiert ist, Krieg und Gewalt das unausweichliche Resultat eines raffgierigen Lebensstil seien, der Fürsorge und soziale Gerechtigkeit ablehne.

Nachdem sie 1989 die Massey-Vorträge an der University of Toronto gehalten hatte, veröffentlichte sie 1992 das Buch The Real World of Technology (Link: Goodreads), das auf ihren Vorträgen basierte.

In einem lesenwerten Brief an eine Studentin (PDF zum Download auf Englisch) spricht sie 1993 über die Möglichkeit – und die Dringlichkeit –, als Feministin eine wissenschaftliche Karriere zu verfolgen. Sie führt das Beispiel der Anitbabypille an, deren gesundheitliche ‚Nebenwirkungen‘ verharmlost würden, weil sie Frauen betreffen, und zitiert ihre Kollegin Margaret Benston (Link Englisch): „Als Frauen und als Feministinnen müssen wir anfangen, mit der Wissenschaft und der Technologie umzugehen, die unser Leben und sogar unsere Körper bestimmt. Wir sind die Objekte schlechter Wissenschaft gewesen; jetzt müssen wir die Erschaffer einer neuen sein.“ (übersetzt nach Quelle: Canadian Woman Studies)

Nach den Terroranschlägen am 11. September 2001 unterstrich Ursula Franklin ihre bereits zuvor geäußerte Meinung, dass Krieg und Gewalt nicht nur moralisch falsch sind, sondern auch nicht zielführend, noch dazu unpraktisch und teuer: „Krieg funktioniert nicht, nicht einmal für die Krieger.“ (übersetzt nach Quelle: Wiki Englisch) Gewalt habe in den vergangenen 50 Jahren nichts gelöst. Zum ersten Jahrestag der Anschläge schrieb sie, es wäre hilfreicher gewesen, 9/11 nicht als kriegerischen Akt, sondern als ‚politisches Erdbeben‘ zu betrachten, denn soziale und politische Strukturen seien nun mal so instabil wie geologische. „Geologische Brüche und menschliche Terroristen entstehen in einem Zusammenspiel der Kräfte, die verstanden und – manchmal – gemildert werden können. Beide können nicht durch Bomben verhindert werden.“ (übersetzt nach Quelle: Wiki Englisch) Für ihre Friedensarbeit wurde ihr 2001 die Pearson Medal of Peace verliehen (überreicht: 2002).

2006 kam The Ursula Franklin Reader: Pacifism as a Map heraus, eine Sammlung ihrer Texte, in denen sie sich der Möglichkeit einer friedlichen Gesellschaft nähert, insbesondere beeinflusst von ihrer Überzeugung vom Quäkertum. Im Clip unten spricht sie darüber.

3D Dialogue: Jesse Hirsch im Gespräch mit Ursula Frnaklin über Pacifism as a Map (Englisch)

In einem Text im Reader spricht sie etwa über die Globalisierung, die sie nicht für eine friedliche Lösung hielt, sondern für eine Verlagerung der bestehenden Konflikte in andere gesellschaftliche Bereiche. Das Ende des Kalten Krieges habe gewaltvolle Auseinandersetzungen regional auf kleinere Staaten verlagert, gleichzeitig sei der politische Konflikt durch den wirtschaftlichen Konflikt ersetzt worden. Der neue Feind dieses Konflikt sei jede:r, di_er die Werte der Gemeinschaft schätze über den materiellen Werten: „Was immer nicht ge- oder verkauft werden kann, was immer nicht in Geld oder Gewinn-Verlust-Rechnungen ausgedrückt werden kann, steht dem ‚Markt‘ als Feindesland im Weg und muss besetzt, verändert und bezwungen werden.“ (übersetzt nach Quelle: Wiki Englisch) Wer dagegen Widerstand leisten wolle, müsse sich der Sprache des Besatzers widersetzen und Begriffe wie stakeholder, Nutzer, Gesundheitsdienstleister, Bildungsdienstleister ablehnen, wenn von Lehrenden, Pflegenden, Heilenden die Rede sei. Auch die kreative Nutzung elektronischer Medien sei wichtig, um die Informationskontrolle der Besatzungsmacht zu umgehen.

Im April 2013 spendete Franklin ihre Schriftensammlung von insgesamt 220 Texten, die sich aus westlicher Perpsektive mit der chinesischen Kultur befassten, an das Konfuzius-Institut des Seneca College Toronto. Drei Jahre später, am 22. Juli 2016, starb Ursula Franklin mit 94 Jahren.

So sehr mich die Fülle des englischen Wikipedia-Eintrags zu Ursula Franklin beglückt hat und so begeistert ich von ihren Zitaten und Gedanken war, so schwierig fand ich die zeitliche Einordnung dieser Gedanken – der deutsche Beitrag geht auf ihre Technikphilosophie nur mit einem Satz ein, der englische Beitrag stellt die Inhalte ihrer Philosophie hingegen losgelöst von ihrer Biografie vor. Auch die oben aufgeführten Inhalte zu Pazifismus und Feminismus mehr inhaltlich denn chronologisch gegliedert. Dennoch empfehle ich die Lektüre des englischen Beitrags, weil er recht ausführlich auf ihre Thesen eingeht. Ich hätte ihre Philosophie gerne eingehender vorgestellt, nicht nur, weil sie faszinierende Gedankengänge beinhaltete, sondern auch, weil sie mir aktueller denn je erscheint. Möglicherweise werde ich mir die Übersetzung des englischen Beitrags für die deutsche Wikipedia auf den Zettel schreiben.

*

Ebenfalls diese Woche

17. September 1888: Michiyo Tsujimura (Link Englisch)
Mit ihrer biochemische Analyse des Grünen Tees erlangte die Japanerin als erste Frau ihres Landes einen Doktortitel in Agrarwissenschaft.

19. September 1915: Elizabeth Stern (Link Englisch)
Die kanadische Pathologin lieferte entscheidende Erkenntnisse über die Zusammenhänge von Zelldysplasie und späteren Krebserkrankungen, insbesondere der Gebärmutter. Ihr verdanken wir, dass Gebärmutterkrebs nicht mehr mit SIcherheit tödlich endet, sondern ein Risiko früh erkannt und der Krebs erfolgreich behandelt werden kann. Auch den Einfluss der Hormonmenge in frühen Verhütungspillen erkannte sie.

30/2020: Vera Rubin, 23. Juli 1928

frauenfiguren vera rubin
vlnr: Anne Kinney, NASA Goddard Space Flight Center, Greenbelt, Md.; Vera Rubin, Dept. of Terrestrial Magnetism, Carnegie Institute of Washington; Nancy Grace Roman Retired NASA Goddard; Kerri Cahoy, NASA Ames Research Center, Moffett Field, Calif.; Randi Ludwig, University of Texas, Austin, Texas. Photo taken during the NASA Sponsors Women in Astronomy and Space Science 2009 Conference, held at the University of Maryland University College (UMUC) Inn and Conference Center, Adelphi, Md, October 21-23 2009
By NASA

Vera Rubin kam in Philadelphia, Pennsylvania zur Welt als Tochter zweier jüdischer Immigranten: Ihr Vater stammte aus Vilnius (damals Polen, heute Litauen) ihre Mutter aus Bessarabien (in der Region des heutigen Moldavien und der Ukraine). Sie zeigte schon mit 10 Jahren Interesse an der Astronomie und beobachtete mit einem selbstgebauten Teleskop aus Pappe Meteoren.

Nachdem sie 1944 die High School abgeschlossen hatte, beschloss sie, am Vassar College zu studieren, weil ihr Vorbild Maria Mitchell dort Professorin gewesen war. Vier Jahre später machte sie dort mit 20 Jahren ihren Bachelor of Science als einzige Absolventin in der Astronomie. Sie wollte sich anschließend in Princeton einschreiben, doch Frauen waren dort damals – und noch für weitere 27 Jahre – nicht zugelassen. Einer Einladung von Harvard folgte Rubin nicht, sondern schrieb sich an der Cornell University in New York ein, da ihr Ehemann Robert dort ebenfalls studierte.

An der Cornell University untersuchte Vera Rubin für ihre Masterarbeit die Bewegungen von 109 Galaxien; dabei war sie eine der ersten Menschen, die Abweichungen von der Hubble-Konstante beobachtete. Kurz gefasst beschreibt die Hubble-Konstante, oder heute: der Hubble-Parameter, die Rate der Expansion des Universums. Durch ihre Beobachtungen kam sie zunächst zu der These, dass es in der Expansion eine Orbitalbewegung des Universums um einen Pol gäbe – eine These, die widerlegt wurde. Doch Rubins Ableitung aus ihren Ergebnissen, dass die Galaxien sich grundsätzlich im Universum fortbewegen, stellte sich als wahr heraus und war Grundlage für weitere Forschungen in dieser Hinsicht. Rubin lieferte mit den Ergebnissen auch einen Beweis für eine Supergalaktische Ebene, die wiederum die Basis bildet für das Supergalaktische Koordinatensystem.

Vera Rubin schloss mit ihrer Forschungsarbeit 1951 ihren Mastertitel ab. Sie trat auch den Kampf an, ihre als kontrovers betrachteten Ergebnisse auch bei der American Astronomical Society zu präsentieren, obwohl sie zu diesem Zeitpunkt ein Kind hatte und mit dem zweiten schwanger war. Sie wurde jedoch abgelehnt, ihre Arbeit wurde übersehen.

Weder von diesem Rückschlag noch vom Elterndasein ließ sich Rubin davon abhalten, ihre Karriere fortzusetzen. Sie schrieb sich für ein Doktorandenstudium an der Georgetown University ein, als Doktorvater betreute sie George Gamow. In den drei Jahren, in denen sie an ihrer Dissertation schrieb, wurde ihr unter anderem einmal untersagt, ihren Doktorvater in seinem Büro zu treffen, weil Frauen diesen Bereich der Universität nicht betreten durften. Ihren Doktortitel erlangte sie 1954 mit einer Dissertation, in der sie die Theorie aufstellte, dass Galaxien in Clustern oder Haufen auftreten, statt zufällig über das Universum verteilt zu sein. Auch dieser Gedanke Rubin war zu diesem Zeitpunkt kontrovers zum allgemeinen Wissensstand und wurde in den folgenden 20 Jahren nicht weiter verfolgt.

Nach ihrer Promotion arbeitete Rubin in den folgenden elf Jahren an diversen Instituten als Lehrerin, Forschungsastronomin und Assistenzprofessorin; da sie auch insgesamt vier Kinder hatte, übte sie große Teile ihres Berufs von zu Hause aus. 1963 arbeitete sie für ein Jahr mit Geoffrey und Margaret Burbidge zusammen an der Erforschung der Galaxienrotation am McDonald Observatory in Texas. Mit Burbidge sollte sie auch danach der allgemeine politische Einsatz für Frauen in der Wissenschaft verbinden. 1965 wurde Rubin Angestellte der Carnegie Institution of Washington, heute Carnegie Institution of Science. Im Rahmen dieser Anstellung ersuchte sie auch um die Möglichkeit, am Palomar Observatory in San Diego zu arbeiten. Dort angekommen, musste sie feststellen, dass es vor Ort keine „facilities“, also Schlaf- und Sanitärräume für Frauen gab. Vera Rubin schnitt ein Stück Papier in Form eines Rocks aus, klebte dieses über eine der ‚männlichen‘ Türschilder und schuf so die Verhältnisse, die ihr einen Aufenthalt erleichtern würden (so schildert es dieser Artikel in The Atlantic).

Ebenfalls bei ihrer Tätigkeit an der Carnegie Institution traf sie auf Kent Ford, der astronomische Instrumente herstellte. Unter anderem hatte er ein optisches Spektrometer gebaut, das die Spektren jener Himmelskörper optisch verstärkte, die bisher zu dunkel waren, um sie zu deuten. Mit den Instrumenten von Ford machte Rubin unter anderem an der Andromedagalaxie unter anderem eine Beobachtung, die als Rubin-Ford-Effekt (Link Englisch) bekannt wurde: Eine Anisotropie in der Expansion des Universums, beobachtet allerdings an einer begrenzten Anzahl Galaxien und heute zu einem nur augenscheinlichen, nicht tatsächlichen Phänomen erklärt. (Eine Anisotropie ist eine Eigenschaft, die von der Richtung einer Bewegung abhängig ist.) Die Ergebnisse ihrer Forschungen wurden jedoch wieder einmal als zu kontrovers von der wissenschaftlichen Gemeinschaft abgelehnt. 1976 veröffentlichte Rubin eine Arbeit, in dem sie die Theorie einer Pekuliargeschwindigkeit nicht nur für Sterne, sondern auch für Galaxien aufstellte, die anfangs abgelehnt, aber heute als ‚large streaming scale‚ akzeptiert ist.

frauenfiguren rotationskurve
Tatsächliche Rotationskurve der Spiralgalaxie Messier 33 (gelbe und blaue Punkte mit Fehlerbalken) und eine aufgrund der Verteilung sichtbarer Materie vorhergesagte (graue Linie).
Von Mario De Leo – Eigenes Werk, CC BY-SA 4.0

Für eine kurze Zeit befassten sich Rubin und Ford auch mit Quasaren, die gerade erst entdeckt worden waren. Sie wandte sich jedoch lieber einem Forschungsbereich zu, in dem sie hoffte, weniger Ablehnung zu erfahren, und untersuchte schließlich die Rotation von Galaxien und ihren Außenbezirken. Sie beobachtete hierbei flache Rotationskurven im Gegensatz zu den wieder abfallenden Kurven, die nach optisch erfassbaren Tatsachen zu erwarten waren. In den Außenbezirken müsste sich eine Galaxie nach dieser Erwartung langsamer drehen – stattdessen beobachtete Rubin, dass sich die äußeren Arem von Spiralgalaxien ebenso schnell um den Mittelpunkt drehen wie die inneren Bereiche. Außerdem drehen sich die Galaxien so schnell, dass sie auseinanderfliegen müssten, wenn der einzige Zusammenhalt, den sie haben, die Schwerkraft ihrer Sterne wäre. Diese beiden Beobachtungen ließen Vera Rubin schließen, dass diese Galaxien Dunkle Materie enthalten müssen und von einem Halo, einem ‚Heiligenschein‘ aus Dunkler Materie umgeben sein müssen. (Der Artikel zu Dunkler Materie enthält auch die schöne Videodatei, welche Bewegung ohne Dunkle Materie zu erwarten wäre und welche tatsächlich vorgefunden wird.) Nach ihren Berechnungen müssten Galaxien etwa fünf bis zehn Mal so viel Dunkle wie gewöhnliche Materie enthalten. Mit ihren Forschungsergebnissen lieferte sie die erste überzeugende Hinweise für diese Theorie, die in den 1930ern erstmals von zwei Astronomen, Jan Hendrik Oort und Fritz Zwicky postuliert wurde.

Später sollte Vera Rubins These durch die Entdeckung der kosmischen Hintergrundstrahlung und des Gravitationslinseneffektes bestätigt werden. Ihre ebenfalls auf diesen Ergebnissen basierende Theorie über nicht-Newtonsche Schwerkraft, die auf Galaxien wirkt, ist nicht wissenschaftlich akzeptiert oder bewiesen. Zur gleichen Zeit erforschte Vera Rubin das Phänomen des Gegenrotation in Galaxien und lieferte erste Nachweise dafür, dass Galaxien durch ihre Bewegung im Universum fusionieren, sowie zum Prozess, mit welchem Galaxien entstehen.

1981 wurde Vera Rubin zum Mitglied der National Academy of Sciences gewählt, als zweite weibliche Astronomin nach ihrer Kollegin Margaret Burbidge. 1996 wurde ihr die Goldmedaille der Royal Astronomical Society verliehen – als zweiter Frau, 168 Jahre nach der ersten Frau, der diese Ehrung zuteil wurde: Caroline Herschel. Das Dicovery Magazin nannte sie 2002 als eine der 50 wichtigsten Frauen in der Wissenschaft. Sie gewann nie einen Nobelpreis, was die Physikerin Lisa Randall und Astronomin Emily Levesque (Link Englisch) für eine Nachlässigkeit halten. Vera Rubin wird von jüngeren Kolleginnen wie Sandra M. Faber und Neta Bahcall (Link Englisch) als wichtiger Einfluss für ihre Wissenschaftskarrieren genannt, als eine derjenigen, die den Weg vorgaben für Frauen in der Wissenschaft, ein Leuchtfeuer für diejenigen, die Familie und eine Karriere in der Astronomie wollten. Rebecca Oppenheimer (Link Englisch), eine der Kuratorinnen für Astrophysik am American Museum of Natural History in New York, nennt Rubins Mentorinnenschaft als entscheidend für ihre Karriere.

Vera Rubin hatte vier Kinder, denen sie nach deren Aussagen vorlebte, dass „ein Leben in der Wissenschaft Spaß mache und erstrebenswert sei“ (Quelle: Wiki), was alle vier veranlasste, ebenfalls Wissenschaftler:innen zu werden. Gemeinsam mit ihrer Kollegin Burbidge setzte sich Rubin für die Repräsentation von Frauen in wissenschaftlichen Institutionen ein, die wenigen weiblichen Mitglieder in der National Academy of Science nannte sie „das Traurigste in ihrem Leben“. Sie starb am 25. Dezember 2016 an Komplikationen ihrer Demenzerkrankung.

Die Carnegie Institution of Science rief ihr zu Ehren ein Forschungsstipendium für Postdoktoranden ins Leben; die Division on Dynamical Astronomy der American Astronomical Society verleiht den Vera Rubin Early Career Prize. Im Dezember 2019 wurde das Large Synoptic Survey Telescope, das auf einem Gipfel des Cerro Panchon in Chile gebaut wird, als Vera C. Rubin Observatory umbenannt. Es soll im kommenden Jahr 2021 first light haben, endgültig fertiggestellt wird es nach Plan 2022.

*

Ebenfalls diese Woche

22. Juli 1776: Etheldred Benett
Der britischen Paläontologin wurde von Zar Nikolaus I. die Ehrendoktorwürde der Universität St. Petersburg verliehen; er wusste wohl nicht, dass es sich bei ihr um eine Frau handelte.

25. Juli 1920: Rosalind Franklin
Quasi das Postergirl des Matilda-Effekts; von ihr nutzten Watson und Crick ungefragt und unauthorisiert Röntgenstrukturanalysen, die ihnen zur Entschlüsselung der DNA-Struktur verhalfen. Jahrelang wurde in wissenschaftlichen und biografischen Texten herablassend mit ihr umgegangen.

25. Juli 1956: Frances H. Arnold
Für ihre Pionierarbeit auf dem Gebiet der Gerichteten Evolution wurde der Biochemikerin 2018 der Nobelpreis für Chemie verliehen.

28/2020: Nettie Stevens, 7. Juli 1861

frauenfiguren nettie stevens
Nettie Stevens at work at the Naples Zoological Station in 1909.
By Bryn Mawr College Special Collections – source, Public Domain

Der Vater von Nettie Stevens war Zimmermann, der nach dem frühen Tod seiner Ehefrau – sie starb, als Nettie drei Jahre alt war, kurz nach der Geburt der jüngeren Schwester – sein zwei überlebenden Kinder alleine versorgen musste. Nach einem Umzug von Vermont nach Massachusetts wurde er allerdings mit seinem Handwerksunternehmen so erfolgreich, dass er beiden Töchtern zumindest die High School finanzieren konnte. 1880 machte Nettie dort ihren Abschluss, dann arbeitete sie in New Hampshire als Lehrerin für Zoologie, Physiologie, Mathematik, Englisch und Latein. Nach drei Jahren in diesem Beruf hatte sie geng Geld gespart, um an die Universität zurückzukehren. An der Westfield Normal School (heute Westfield State University) absolvierte sie ein Studienprogramm, das eigentlich auf vier Jahre ausgelegt war, innerhalb von zwei Jahren; im Anschluss daran arbeitete sie wieder als Lehrerin.

Erst ein gutes Jahrzehnt später konnte Nette Stevens sich von gespartem Geld ein tiefergehendes Studium leisten. 1896 schrieb sie sich an der Stanford University ein und erreichte 1899 einen Bachelor-, ein Jahr später einen Master-Abschluss in Biologie. Im Laufe ihrer Studien hatte sie begonnen, sich mit Histologie zu befassen, für ihr Doktorandenstudium in diesem Fach wechselte sie 1900 an das Bryn Mawr College, denn dort war Edmund Beecher Wilson Leiter der biologischen Fakultät gewesen, den Stevens bewunderte, und auch zu seinem Nachfolger Thomas Hunt Morgan schaute sie auf. Sie konnte dank eines Stipendiums im Rahmen ihres Studiums in Neapel und Würzburg Forschung betreiben, bevor sie mit Morgan als Doktorvater ihre Dissertation einreichte. Das Thema ihrer Arbeit war die Zellregeneration in einfachen Mehrzellern, die Entwicklung von Spermien und Eiern, Urkeimzellen von Insekten und die Zellteilung in Seeigeln und Würmern, sie erlangte damit 1903 ihren Doktortitel. Bryn Mawr bleib für ihr weiteres restliches Leben ihre Wirkungsstätte – ihr Ziel war es, an ihre Alma Mater als Professorin fest angestellt zu werden. Zunächst blieb sie als Lehrkraft für experimentelle Morphologie, 1904 begann sie einjähriges ihr Postdoc am Carnegie Institute of Science in Washington, Edmund B. Wilson und Thomas H. Morgan schrieben ihr für diese Position die benötigten Empfehlungen. Stevens erhielt ein Stipendium für ihre Erforschung der Vererbung, insbesondere wollte sie die Mendelschen Regeln (damals noch ‚Gesetze‘) überprüfen hinsichtlich ihrer Gültigkeit für die Geschlechtsdetermination.

Das erste Tier, das sich Stevens für ihre Untersuchungen vornahm, war der Mehlkäfer (von dem die Mehlwürmer gelegt werden) Tenebrio molitor. In den Zellen dieser Insekt entdeckte Stevens zum ersten Mal das Chromosom, das sich nach ihren Beobachtungen auf die unterschiedlichen Geschlechter der erwachsenen Tiere auswirkte (sie nannte es jedoch damals noch nicht das Y-Chromosom). Sie weitete ihre Forschung auf andere Insekten aus, unter anderem auf die Taufliege Drosphila melanogaster, die sie fortan in ihren Labors züchtete. Nettie Stevens war es, die erkannte, wie gut diese Art aufgrund der kurzen Lebenszyklen, einem kleinen Chromosomensatz und einer großen Anzahl Nachkommen pro Befruchtung für genetische Untersuchungen geeignet war, und tatsächlich war sie es auch, die Thomas H. Morgan ebenfalls davon überzeugte. Noch heute gilt Drosophila als ideales Forschungsobjekt und Morgan wird zumeist als Begründer dieser Praxis geführt.

Zur Zeit von Stevens‘ Forschungen herrschte noch die Ansicht, dass das Geschlecht eines Kindes im Mutterleib von der Umwelt oder dem Verhalten der Mutter beeinflusst wurde – in jedem Fall lag es in der „Verantwortung“ der Mutter, mit welchem Geschlecht ein Kind auf die Welt käme. Clarence Erwin McClung hatte kurze Zeit vor Nettie Stevens die Vermutung geäußert, dass das Geschlecht eines Lebewesens durch das X-Chromosom in den Keimzellen bestimmte würde, doch Thomas H. Morgan und auch Edmund B. Wilson bestritten dies zunächst. Während Stevens bei ihrer Erforschung der Entstehung des chromosomalen Geschlechtes die Keimzellen beider Geschlechter untersuchte, erforschte Wilson allein an Spermien die Spermatogenese; er sollte das damit begründen, dass Eizellen zu fetthaltig für den Färbeprozess seien und deswegen nicht untersucht werden könnten. Nettie Stevens fand hingegen in den Zellen ihrer Taufliegen Paare mit einem großen und einem kleinen Chromosom, Paare mit zwei großen Chromosomen und einzelne große Chromosomen (XO), dass jedoch nur die Individuen mit einem Groß-Klein-Paar den männlichen Phänotyp aufwiesen. Sie schloss daraus, dass es das heute so genannte Y-Chromosom war, dass den geschlechtlichen Phänotyp bestimmte (was Stevens noch nicht wissen konnte: dass dieser Phänotyp dann auch noch anderen genetischen Einflüssen unterliegt, siehe Intergeschlechtlichkeit). Der Artikel, den sie darüber schrieb, brachte ihr einen Preis von $1.000,- ein für den „besten wissenschaftlichen Artikel von einer Frau geschrieben“, und das Carnegie Institute veröffentlichte ihre Arbeit in den „Studien zur Spermatogenese“. Doch weder von ihren männlichen Vorbilden noch von der wissenschaftlichen Gemeinschaft wurde sie als Forscherin und Entdeckerin anerkannt, noch weniger gewürdigt. Edmund B. Wilson überarbeitete, nachdem er Stevens Forschungsergebnisse gelesen hatte, seine eigene Arbeit dahingehend, dass sie zu Stevens Ergebnissen passen, und kam ihr dann mit der Veröffentlichung seiner Ergebnisse zuvor – er dankte ihr für ihre Entdeckung in einer Fußnote. 1906 wurden Wilson und Thomas H. Morgan eine Einladung, auf einer Konferenz über ihre Entdeckungen der Geschlechtsdetermination zu sprechen, doch Nettie Stevens wurde übersehen.

1908 erhielt Stevens noch ein Stipendium von der American Association of University Women und 1912 wurde ihr von Bryn Mawr nach einer Dekade als außerordentliche Professorin endlich eine Stelle als festangestellte Professorin ohne Lehrverpflichtung angeboten. In ihrer kurzen Zeit als Wissenschaftlerin hatte sie bis dahin 38 Publikationen veröffentlicht, doch sie konnte die lang ersehnte Stelle nicht mehr antreten: Am 4. Mai 1912 starb sie mit nur 51 Jahren an Brustkrebs.

Noch in seinem Nachruf rückte Thomas H. Morgan die eigentliche Vorreiterin seiner wissenschaftlichen Erfolge auf die Seitenlinie. In seinem Nachruf schrieb er, sie habe „Anteil an einer Entdeckung von Bedeutung“ gehabt, behauptete allerdings, sie habe McClungs Fehlannahme bestätigt, dass X-Chromosom sei für den geschlechtlichen Phänotyp verantwortlich – wohingegen sie gerade festgestellt hatte, dass es das kleinere Y-Chromosom sein musste. Edmund B. Wilson unvollständige Forschungsergebnisse seien „eine gemeinsame Entdeckung“ mit Stevens gewesen, eine Aussage, die Wilson später, wiederum in einer Fußnote, korrigierte. Auch habe es ihr „zeitweise an Inspiration gefehlt, die die reine Tatsache einer Entdeckung für eine breitere Sichtweise nutzt“ – es war ihm womöglich tatsächlich nicht bewusst, dass dieser Mangel an Inspiration darin begründet lag, dass sie vom anregenden Austausch mit Kollegen, etwa auf Konferenzen, ausgeschlossen war.

Thomas H. Morgan gewann 1933 den Nobelpreis für Medizin für Erkenntnisse zur Vererbung, die zu großen Teilen auf den intensiven Forschungen von Nettie Stevens basierte.

1994 wurde sie in die National Women’s Hall of Fame aufgenommen. 2017 benannte die Westfield State University einen Gebäudekomplex nach ihr, in dem einige MINT-Fachbereiche untergebracht sind.

FemBio und Vox sind auch verärgert über den Matilda-Effekt.

*

Ebenfalls diese Woche

7. Juli 1860: Alice Johnson (Link Englisch)
1884 wurde eine Arbeit dieser britischen Zoologin als erstes Schriftstück einer Frau im Protokoll der Royal Society erwähnt. Sie beschäftigte sich auch mit Telepathie.

10. Juli 1724: Eva Ekeblad
Weil sie sich mit den Möglichkeiten des Kartoffelanbaus in Europa beschäftigte, gilt die schwedische Adlige als Agrarwissenschaftlerin. Sie entwickelte Methoden zur Gewinnung von Stärke und Alkohol aus Kartoffeln, unabhängig davon auch ein Verfahren zum Bleichen von Textilien. Sie war 1748 die erste Frau, die in der Königlich Schwedischen Akademie der Wissenschaften aufgenommen wurde, und blieb die einzige bis 1910, als Marie Curie ebenfalls aufgenommen wurde.

12. Juli 1913: Mildred Cohn
Diese amerikanische Biochemikerin und Biophysikerin entwickelte Methoden und Anwendungen in der Kernspinresonanzspektroskopie, die es ermöglichten, metabolische Prozesse auf molekulaler Ebene sichtbar zu machen.

24/2020: Emma Turner, 9. Juni 1867

Emma Turner (Link Englisch) nahm erst mit 33 Jahren die Fotografie auf, nach einer Begegnung mit dem Naturfotografen Richard Kearton (Link Englisch). Von ihrem Leben davor ist nicht viel bekannt.

Sie lebte und arbeitete 20 Jahre lang als ornithologische Fotografin im Naturschutzgebiet Hickling Board (Link Englisch) in Norfolk; große Teile des Jahres verbrachte sie dort, den Rest der Zeit lebte sie in Cambridgeshire. In Hickling Board hatte sie Hausboot, das sie selbst entworfen hatte, die Water Rail (zu Deutsch Wasserralle), nach dem ersten Tier, das sie in dem Naturschutzgebiet fotografiert hatte. Außerdem hatte sie eine Hütte auf einer Insel, die schließlich als Turner’s Island bekannt wurde. Schon 1905 war sie eine der ersten zehn Frauen, die zur Fellow der Linnean Society of London gewählt wurden.

1911 machte sie in Hickling Board das Bild von einem Rohrdommel-Küken, das den Beweis erbrachte, dass Rohrdommeln wieder im Vereinigten Königreich heimisch wurden. Diese Art war Ende des 19. Jahrhunderts lokal ausgestorben. Für ihr Foto gewann Turner die Goldmedaille der Royal Photographic Society.

1924 bis 1925 war sie 18 Monate lang die erste „Beobachterin“ (oder „Hüterin“) auf der Insel Scolt Head (Link Englisch). Sie veröffentlichte zwei Bücher über die Vögel ihrer Heimat und ihre Erlebnisse in den Naturschutzgebieten, wurde erstes weibliches Mitglied der British Ornithologists‘ Union und Ehrenmitglied der British Federation of University Women (Link Englisch), ohne je einen universitären Abschluss gemacht zu haben.

Eine Kollegin beschrieb sie wie folgt: „Als Frau sah sie, was zu tun war, und tat es.“ (Quelle: National Trust) 1938 verlor sie ihr Augenlicht, am 13. August 1940 starb sie mit 73 Jahren.

Ebenfalls diese Woche

11. Juni 1860: Mary J. Rathbun
Die amerikanische Meeresbiologin beschrieb über 1.000 neue Arten von Krebstieren.

14. Juni 1877: Ida Maclean
Sie wurde als erste Frau Mitglied der Chemical Society; außerdem war die Biochemikerin in der Frauenrechtsbewegung tätig und unter anderem Gründungsmitglied der British Federation of University Women.

WEG MIT
§218!