Der Wikipedia-Beitrag von Ma Chung-pei (Link Englisch) gibt ihr Geburtsjahr zwar nicht an, erwähnt aber, dass sie 1983 die National Violin Competition gewann, und weiter unten, dass sie dies im Alter von 16 Jahren tat.
2011 entdeckte das Team unter Ma Chung-peis Leitung zwei der größten bekannten Schwarzen Löcher. Sie liegen in den Zentren weit entfernter Galaxien und sind in etwa 2.500 Mal so groß wie das Schwarze Loch im Zentrum unserer Galaxie. (Quelle: phys.org)
Mit der Kombination eines Wide-Field-Teleskops und einer Megapixel-Kamera entdeckte Vivas an die 100 von diesen Sternen in sehr weiter Entfernung von der Erde, zwischen 13.000 und 220.000 Lichtjahre von unserer Sonne entfernt und somit wohl die ältesten Sterne unserer Galaxie, der Milchstraße. Nach der aktuellen Theorie entstand zuerst der ‚Heiligenschein‘, der Galaktische Halo, vor mehr als 13 Milliarden Jahren; die Galaktische Scheibe und die Spiralarme entstanden erst in der Folgezeit. So ermöglichte Vivas‘ Entdeckung die weitere Erforschung der Struktur und Eigenschaften der äußeren Teile der Milchstraße.
Jetzt hätte ich mich beinahe als Ausführende des Matilda-Effektes schuldig gemacht und eine Wissenschaftlerin unterschlagen, weil sie den Nobelpreis für Physik mit Männern teilt! Ihr wisst es alle schon, der Vollständigkeit halber sage ich aber trotzdem noch mal, dass Andrea Ghez dieses Jahr gemeinsam mit anderen ausgezeichnet wurde für die Entdeckung des supermassiven kompakten Objektes (aka Schwarzes Loch) im Zentrum unserer Galaxie.
Vera Rubin kam in Philadelphia, Pennsylvania zur Welt als Tochter zweier jüdischer Immigranten: Ihr Vater stammte aus Vilnius (damals Polen, heute Litauen) ihre Mutter aus Bessarabien (in der Region des heutigen Moldavien und der Ukraine). Sie zeigte schon mit 10 Jahren Interesse an der Astronomie und beobachtete mit einem selbstgebauten Teleskop aus Pappe Meteoren.
Nachdem sie 1944 die High School abgeschlossen hatte, beschloss sie, am Vassar College zu studieren, weil ihr Vorbild Maria Mitchell dort Professorin gewesen war. Vier Jahre später machte sie dort mit 20 Jahren ihren Bachelor of Science als einzige Absolventin in der Astronomie. Sie wollte sich anschließend in Princeton einschreiben, doch Frauen waren dort damals – und noch für weitere 27 Jahre – nicht zugelassen. Einer Einladung von Harvard folgte Rubin nicht, sondern schrieb sich an der Cornell University in New York ein, da ihr Ehemann Robert dort ebenfalls studierte.
An der Cornell University untersuchte Vera Rubin für ihre Masterarbeit die Bewegungen von 109 Galaxien; dabei war sie eine der ersten Menschen, die Abweichungen von der Hubble-Konstante beobachtete. Kurz gefasst beschreibt die Hubble-Konstante, oder heute: der Hubble-Parameter, die Rate der Expansion des Universums. Durch ihre Beobachtungen kam sie zunächst zu der These, dass es in der Expansion eine Orbitalbewegung des Universums um einen Pol gäbe – eine These, die widerlegt wurde. Doch Rubins Ableitung aus ihren Ergebnissen, dass die Galaxien sich grundsätzlich im Universum fortbewegen, stellte sich als wahr heraus und war Grundlage für weitere Forschungen in dieser Hinsicht. Rubin lieferte mit den Ergebnissen auch einen Beweis für eine Supergalaktische Ebene, die wiederum die Basis bildet für das Supergalaktische Koordinatensystem.
Vera Rubin schloss mit ihrer Forschungsarbeit 1951 ihren Mastertitel ab. Sie trat auch den Kampf an, ihre als kontrovers betrachteten Ergebnisse auch bei der American Astronomical Societyzu präsentieren, obwohl sie zu diesem Zeitpunkt ein Kind hatte und mit dem zweiten schwanger war. Sie wurde jedoch abgelehnt, ihre Arbeit wurde übersehen.
Weder von diesem Rückschlag noch vom Elterndasein ließ sich Rubin davon abhalten, ihre Karriere fortzusetzen. Sie schrieb sich für ein Doktorandenstudium an der Georgetown University ein, als Doktorvater betreute sie George Gamow. In den drei Jahren, in denen sie an ihrer Dissertation schrieb, wurde ihr unter anderem einmal untersagt, ihren Doktorvater in seinem Büro zu treffen, weil Frauen diesen Bereich der Universität nicht betreten durften. Ihren Doktortitel erlangte sie 1954 mit einer Dissertation, in der sie die Theorie aufstellte, dass Galaxien in Clustern oder Haufen auftreten, statt zufällig über das Universum verteilt zu sein. Auch dieser Gedanke Rubin war zu diesem Zeitpunkt kontrovers zum allgemeinen Wissensstand und wurde in den folgenden 20 Jahren nicht weiter verfolgt.
Nach ihrer Promotion arbeitete Rubin in den folgenden elf Jahren an diversen Instituten als Lehrerin, Forschungsastronomin und Assistenzprofessorin; da sie auch insgesamt vier Kinder hatte, übte sie große Teile ihres Berufs von zu Hause aus. 1963 arbeitete sie für ein Jahr mit Geoffrey und Margaret Burbidge zusammen an der Erforschung der Galaxienrotation am McDonald Observatory in Texas. Mit Burbidge sollte sie auch danach der allgemeine politische Einsatz für Frauen in der Wissenschaft verbinden. 1965 wurde Rubin Angestellte der Carnegie Institution of Washington, heute Carnegie Institution of Science. Im Rahmen dieser Anstellung ersuchte sie auch um die Möglichkeit, am Palomar Observatory in San Diego zu arbeiten. Dort angekommen, musste sie feststellen, dass es vor Ort keine „facilities“, also Schlaf- und Sanitärräume für Frauen gab. Vera Rubin schnitt ein Stück Papier in Form eines Rocks aus, klebte dieses über eine der ‚männlichen‘ Türschilder und schuf so die Verhältnisse, die ihr einen Aufenthalt erleichtern würden (so schildert es dieser Artikel in The Atlantic).
Ebenfalls bei ihrer Tätigkeit an der Carnegie Institution traf sie auf Kent Ford, der astronomische Instrumente herstellte. Unter anderem hatte er ein optisches Spektrometer gebaut, das die Spektren jener Himmelskörper optisch verstärkte, die bisher zu dunkel waren, um sie zu deuten. Mit den Instrumenten von Ford machte Rubin unter anderem an der Andromedagalaxie unter anderem eine Beobachtung, die als Rubin-Ford-Effekt (Link Englisch) bekannt wurde: Eine Anisotropie in der Expansion des Universums, beobachtet allerdings an einer begrenzten Anzahl Galaxien und heute zu einem nur augenscheinlichen, nicht tatsächlichen Phänomen erklärt. (Eine Anisotropie ist eine Eigenschaft, die von der Richtung einer Bewegung abhängig ist.) Die Ergebnisse ihrer Forschungen wurden jedoch wieder einmal als zu kontrovers von der wissenschaftlichen Gemeinschaft abgelehnt. 1976 veröffentlichte Rubin eine Arbeit, in dem sie die Theorie einer Pekuliargeschwindigkeit nicht nur für Sterne, sondern auch für Galaxien aufstellte, die anfangs abgelehnt, aber heute als ‚large streaming scale‚ akzeptiert ist.
Für eine kurze Zeit befassten sich Rubin und Ford auch mit Quasaren, die gerade erst entdeckt worden waren. Sie wandte sich jedoch lieber einem Forschungsbereich zu, in dem sie hoffte, weniger Ablehnung zu erfahren, und untersuchte schließlich die Rotation von Galaxien und ihren Außenbezirken. Sie beobachtete hierbei flache Rotationskurven im Gegensatz zu den wieder abfallenden Kurven, die nach optisch erfassbaren Tatsachen zu erwarten waren. In den Außenbezirken müsste sich eine Galaxie nach dieser Erwartung langsamer drehen – stattdessen beobachtete Rubin, dass sich die äußeren Arem von Spiralgalaxien ebenso schnell um den Mittelpunkt drehen wie die inneren Bereiche. Außerdem drehen sich die Galaxien so schnell, dass sie auseinanderfliegen müssten, wenn der einzige Zusammenhalt, den sie haben, die Schwerkraft ihrer Sterne wäre. Diese beiden Beobachtungen ließen Vera Rubin schließen, dass diese Galaxien Dunkle Materie enthalten müssen und von einem Halo, einem ‚Heiligenschein‘ aus Dunkler Materie umgeben sein müssen. (Der Artikel zu Dunkler Materie enthält auch die schöne Videodatei, welche Bewegung ohne Dunkle Materie zu erwarten wäre und welche tatsächlich vorgefunden wird.) Nach ihren Berechnungen müssten Galaxien etwa fünf bis zehn Mal so viel Dunkle wie gewöhnliche Materie enthalten. Mit ihren Forschungsergebnissen lieferte sie die erste überzeugende Hinweise für diese Theorie, die in den 1930ern erstmals von zwei Astronomen, Jan Hendrik Oort und Fritz Zwicky postuliert wurde.
Später sollte Vera Rubins These durch die Entdeckung der kosmischen Hintergrundstrahlung und des Gravitationslinseneffektes bestätigt werden. Ihre ebenfalls auf diesen Ergebnissen basierende Theorie über nicht-Newtonsche Schwerkraft, die auf Galaxien wirkt, ist nicht wissenschaftlich akzeptiert oder bewiesen. Zur gleichen Zeit erforschte Vera Rubin das Phänomen des Gegenrotation in Galaxien und lieferte erste Nachweise dafür, dass Galaxien durch ihre Bewegung im Universum fusionieren, sowie zum Prozess, mit welchem Galaxien entstehen.
Vera Rubin hatte vier Kinder, denen sie nach deren Aussagen vorlebte, dass „ein Leben in der Wissenschaft Spaß mache und erstrebenswert sei“ (Quelle: Wiki), was alle vier veranlasste, ebenfalls Wissenschaftler:innen zu werden. Gemeinsam mit ihrer Kollegin Burbidge setzte sich Rubin für die Repräsentation von Frauen in wissenschaftlichen Institutionen ein, die wenigen weiblichen Mitglieder in der National Academy of Science nannte sie „das Traurigste in ihrem Leben“. Sie starb am 25. Dezember 2016 an Komplikationen ihrer Demenzerkrankung.
Die Carnegie Institution of Science rief ihr zu Ehren ein Forschungsstipendium für Postdoktoranden ins Leben; die Division on Dynamical Astronomy der American Astronomical Society verleiht den Vera Rubin Early Career Prize. Im Dezember 2019 wurde das Large Synoptic Survey Telescope, das auf einem Gipfel des Cerro Panchon in Chile gebaut wird, als Vera C. Rubin Observatory umbenannt. Es soll im kommenden Jahr 2021 first light haben, endgültig fertiggestellt wird es nach Plan 2022.
25. Juli 1920: Rosalind Franklin Quasi das Postergirl des Matilda-Effekts; von ihr nutzten Watson und Crick ungefragt und unauthorisiert Röntgenstrukturanalysen, die ihnen zur Entschlüsselung der DNA-Struktur verhalfen. Jahrelang wurde in wissenschaftlichen und biografischen Texten herablassend mit ihr umgegangen.
English below Wiki deutsch
Henrietta Swan Leavitt war eine der Damen, die als niedrig bezahlte ‚menschliche Rechenmaschine‘ bei Edward Charles Pickering, auch als ‚Pickerings Harem‘ bekannt, am Harvard-College-Observatorium arbeiteten. Sie war dank gehobener Abstammung nicht auf ein Einkommen angewiesen und arbeitete zunächst für Studienpunkte, später für einen Pfenniglohn. Sie war durch eine Erkrankung so gut wie taub, was jedoch keinen Einfluss auf ihre Arbeit zu haben schien; nur ihr weibliches Geschlecht machte es ihr unmöglich, selbst ein Teleskop zu handhaben.
Leavitt war beauftragt, veränderliche Sterne zu beobachten und zu katalogisieren. Dabei maß sie die Helligkeit spezieller veränderlicher Sterne, nämlich der Cepheiden, und machte dabei die Beobachtung, die der Erkenntnis und Berechnung unseres heutigen Wissens über das Weltall zugrunde liegt: Sie stellte fest, dass sich eine Beziehung herstellen ließ zwischen der Leuchtkraft und der periodischen Veränderung der absoluten Helligkeit dieser Sterne. Aus dieser Beziehung lässt sich ihre Distanz zum Beobachtungspunkt berechnen. Mithilfe Leavitts Logarithmus konnte bald darauf belegt werden, dass sich einige der katalogisierten Sterne nicht in der unseren, sondern in Lichtjahren entfernten Galaxien befanden. Die Folgen von Leavitts Erkenntnis rückte – angewandt von Harlow Shapley – nicht nur unser Sonnensystem aus dem Zentrum unserer Galaxie, sondern auch – angewandt von Edwin Hubble – unsere Galaxie aus dem Zentrum des Weltalls.
Sie starb 1921 an Krebs; vier Jahre später erst kam Gösta Mittag-Leffler, ein schwedischer Wissenschaftler, der von ihrem Tod noch nicht erfahren hatte, auf die Idee, sie für den Nobelpreis vorzuschlagen. Dieser wird nicht posthum verliehen, daher konnte Leavitt nicht nominiert werden.
Wiki english Henrietta Swan Leavitt was one of the ladies who worked as underpaid ‚human computers‘ for Edward Charles Pickering at Harvard College Observatory, also known as Pickering’s harem. Coming from a wealthy family, she was not reliant on an income and worked for study points at first, later for a few cents per hour. An illness had rendered her almost completely deaf, a fact that had ostensibly no influence on her work; it was only her female sex that made it impossible for her to operate a telescope herself.
Leavitt was assigned with the observation and cataloguing of variable stars. She measured the luminosity of a special kind of variable stars, namely Cepheid variables, and whilst doing so made the observation which underlies the discovery and computation of our current knowledge of the universe: She found a relationship between the luminosity and the periodical change of absolute brightness of these stars. From this relationship their distance from the viewing point can be extrapolated. Based on Leavitt’s logarithm it was soon possible to prove that some of the catalogued stars were not part of our, but other galaxies lightyears away. . The consequences of Leavitt’s finding – applied by Harlow Shapley – moved our sun from the centre of our galaxy and – applied by Edwin Hubble – our galaxy from the centre of the universe.
She died of cancer in 1921; it was only four years later that Gösta Mittag-Leffler, a Swedish scientist who hadn’t heard of her death, thought of proposing her to the Nobel Prize committee. The prize is not awarded posthumously, thus Leavitt could not be nominated.
Wiki deutschWiki englisch
Der Lebensweg von Caroline Herschel ist wunderbar gewunden und eng an die Männer in ihrem Leben geknüpft. Die Mutter legte Wert auf ihre Ausbildung im Haushalt, der Vater bot die musikalische Ausbildung und Karriere. Die Musik und Mathematik sowie die Astronomie waren die Bildungsangebote ihres Vaters, auf die sie sich stürzte, um den ungeliebten Handarbeiten und traditionellen weiblichen Aufgaben im Haus zu entkommen. Als ihr Bruder Friedrich Wilhem als Organist und Konzertleiter nach England ging, folgte sie ihm als Haushälterin, um dann zunächst eine Karriere als Sängerin zu beginnen. Sie war sogar so erfolgreich, dass sie sich von ihrem Bruder unabhängig hätte machen können; ihre enge geschwisterliche Beziehung sowie die gemeinsame Leidenschaft Astronomie, der sie beide frönten, ließen sie jedoch Angebote für ein eigenständiges Engagement ablehnen. Wenn sie nicht sang oder den Haushalt führte, stellte Caroline Teleskope her und wartete die bereits betriebenen – bis ihr Bruder eher zufällig den Planeten Uranus entdeckte.
Als Entdecker eines neuen Planeten wurde aus dem Organist und Konzertleiter Friedrich Wilhelm Herschel ein königlicher Astronom, und aus Caroline seine Assistentin. Sie gab das Singen ganz auf und widmete sich unter den Fittichen ihres Bruders ganz der Sternenkunde. Sie unterstütze ihn nicht nur in der Ordnung, Datenaufnahme und -sortierung, der Kartierung und Katalogisierung, sie selbst beobachtete und durchforschte den Nachthimmel und machte dabei einige eigene Entdeckungen. Diese wurden in der Liste ihres Bruders mit ihrem Kürzel (CH) versehen: hier kann man eine ausführliche, kommentierte Liste der von ihr gefundenen Sternenhaufen, Galaxien und Nebel finden.
Nachdem ihr Bruder 1822 gestorben war, kehrte sie in ihre Heimat Hannover zurück, wo sie bis zu ihrem Tod 1848 lebte, forschte und ihrem Neffen John half, die Arbeit seines Vaters fortzusetzen. Sie wurde in ihren späten Jahren als einflussreiche Größe in der Astronomie von ihren Kollegen anerkannt und verehrt, erhielt die Goldmedaillen der Royal Astronomical Society und der Preußischen Akademie der Wissenschaften und wurde zum Mitgleid der Königlichen Irischen Akademie der Wissenschaft ernannt.
Von 178 (Wikipedia) relevanten Persönlichkeiten vor dem 19. Jahrhundert sind diese 18 (inklusive Caroline Herschel) Frauen:
14.3.1478 Anastasia von Brandenburg
18.3.1496 Mary Tudor (Frankreich)
16.3.1596 Ebba Brahe
18.3.1598 Anna Sophia von Brandenburg
19.3.1647 Anna Elisabeth von Anhalt-Bernburg
18.3.1654/55 Catharina Charlotta De La Gardie
16.3.1687 Sophie Dorothea von Hannover
17.3.1714 Anna Charlotte von Lothringen
16.3.1729 Maria Luise Albertine zu Leiningen-Dagsburg-Falkenburg
15.3.1737 Amarindra
17.3.1754 Madame Roland
15.3.1768 Maria Anna Czartoryska
17.3.1782 Sophie von Kühn
14.3.1788 Lulu von Thürheim
20.3.1791 Marie Ellenrieder
15.3.1792 Virginie Ancelot
16.3.1799 Anna Atkins