Im Gebiet der Material- und Ingenieurwissenschaft ist Sossina M. Haile Expertin für Ionenleitung in Festkörpern: Wie elektrische Ladung in festen Stoffen durch Ionen – statt durch Elektronen – transportiert wird. Die Ionenleitfähigkeit eines Stoffes hängt unter anderem mit seiner Kristallstruktur und deren Zustandsveränderung zusammen, weshalb auch die Kristallstrukturanalyse, die Erforschung der Neutronenstreuung sowie die Thermische Analyse zu Hailes Arbeitsbereich gehören. Das Ziel ihrer Forschungen ist es, die Mechanismen zu verstehen, die den Ionentransport in Festkörpern bestimmen; die Erkenntnisse, zu denen Sossina M. Haile dabei kommt, dienen der Entwicklung von festen (im Gegensatz zu flüssigen) Elektrolyten und ’neuartigen festkörperlichen elektrochemischen Vorrichtungen‘ (‚novel solid-state electrochemical devices‚), wie Batterien, Sensoren, Ionenpumpen und Brennstoffzellen.
Für ihr Doktorandenstudium erhielt Sossina M. Haile ein Stipendium, die AT&T Cooperative Research Fellowship. In der Zeit um ihre Promotion, in der sie am Max-Planck-Institut für Festkörperforschung in Stuttgart forschte, erhielt sie eine Förderung aus dem Fulbright-Programm, im Jahr Postdoc den Humboldt-Forschungspreis. Nach ihrer Promotion war sie zunächst an der University of Washington als Assistenzprofessorin tätig, bis sie 1996 an das California Institute of Technology (CalTech) wechselte. Während der 1990er Jahre gelang es ihr mit ihrem Team, die erste Brennstoffzelle aus Säure-Festkörpern zu entwickeln (Link Englisch), indem sie eine ‚superprotonische‚ chemische Verbindung schuf. Diese setzte sich trotz Effizienz wohl nicht am Markt durch, auch wenn zwei Studenten, die mit Haile gearbeitet hatten, 2003 das Unternehmen Superprotonic gründeten – mit der Professorin als wissenschaftliche Beraterin –, das diese Brennstoffzellen herstellte.
Seit 2015 ist Sossina M. Haile Professorin für Angewandte Physik an der Northwestern University. Hier erforscht sie im Team protonenleitende Säure-Festkörper-Verbindungen, protonenleitende sowie Sauerstoff und Elektronen leitende Perowskit-Verbindungen, Sauerstoff leitende Oxide und Alkalien leitende Silikate. Sie arbeitet dabei mit der bestimmt spannenden, aber mir völlig unverständlichen dielektrischen Spektroskopie.
Auf der Seite der HistoryMakers findet sich ein Videoausschnitt aus einem Interview mit, in dem sie von ihrem Verhältnis zur Religion ihrer Eltern erzählt, deren Messen in der SakralspracheAltäthiopisch oder Ge’ez gehalten werden.
30. Juli 1746: Louise du Pierry Nachdem sie ihren zulünftigen Lebensgefährten Jérôme Lalande kennengelernt hatte, begann sich die junge Französin mit der Astronomie zu beschäftigen. Sie wurde die erste (weibliche) Hochschullehrerin für Astronomie an der Sorbonne und Nachfolgerin von Nicole-Reine Lépaute an der Akademie von Béziers.
31. Juli 1877: Harriet Margaret Louisa Bolus Die südafrikanische Botanikerin arbeitete im Bolus-Herbarium, das an die Universität Kapstadt überging, nachdem der Gründer verstorben war. Ihre Spezialität bei der Erforschung der Kapflora waren Orchideen und Heidekrautgewächse.
1. August 1818: Maria Mitchell Als Tochter in einer Quäker-Familie wurde sie in ihrem wissenschaftlichen Interesse gefördert und hatte früh mit astronomischen Geräten Kontakt. Sie wurde 1848 als erste Frau in die American Academy of Arts and Sciences aufgenommen und war auch die erste weibliche Professorin für Astronomie am Vassar College– der Grund, warum Vera Rubin dort studierte.
Vera Rubin kam in Philadelphia, Pennsylvania zur Welt als Tochter zweier jüdischer Immigranten: Ihr Vater stammte aus Vilnius (damals Polen, heute Litauen) ihre Mutter aus Bessarabien (in der Region des heutigen Moldavien und der Ukraine). Sie zeigte schon mit 10 Jahren Interesse an der Astronomie und beobachtete mit einem selbstgebauten Teleskop aus Pappe Meteoren.
Nachdem sie 1944 die High School abgeschlossen hatte, beschloss sie, am Vassar College zu studieren, weil ihr Vorbild Maria Mitchell dort Professorin gewesen war. Vier Jahre später machte sie dort mit 20 Jahren ihren Bachelor of Science als einzige Absolventin in der Astronomie. Sie wollte sich anschließend in Princeton einschreiben, doch Frauen waren dort damals – und noch für weitere 27 Jahre – nicht zugelassen. Einer Einladung von Harvard folgte Rubin nicht, sondern schrieb sich an der Cornell University in New York ein, da ihr Ehemann Robert dort ebenfalls studierte.
An der Cornell University untersuchte Vera Rubin für ihre Masterarbeit die Bewegungen von 109 Galaxien; dabei war sie eine der ersten Menschen, die Abweichungen von der Hubble-Konstante beobachtete. Kurz gefasst beschreibt die Hubble-Konstante, oder heute: der Hubble-Parameter, die Rate der Expansion des Universums. Durch ihre Beobachtungen kam sie zunächst zu der These, dass es in der Expansion eine Orbitalbewegung des Universums um einen Pol gäbe – eine These, die widerlegt wurde. Doch Rubins Ableitung aus ihren Ergebnissen, dass die Galaxien sich grundsätzlich im Universum fortbewegen, stellte sich als wahr heraus und war Grundlage für weitere Forschungen in dieser Hinsicht. Rubin lieferte mit den Ergebnissen auch einen Beweis für eine Supergalaktische Ebene, die wiederum die Basis bildet für das Supergalaktische Koordinatensystem.
Vera Rubin schloss mit ihrer Forschungsarbeit 1951 ihren Mastertitel ab. Sie trat auch den Kampf an, ihre als kontrovers betrachteten Ergebnisse auch bei der American Astronomical Societyzu präsentieren, obwohl sie zu diesem Zeitpunkt ein Kind hatte und mit dem zweiten schwanger war. Sie wurde jedoch abgelehnt, ihre Arbeit wurde übersehen.
Weder von diesem Rückschlag noch vom Elterndasein ließ sich Rubin davon abhalten, ihre Karriere fortzusetzen. Sie schrieb sich für ein Doktorandenstudium an der Georgetown University ein, als Doktorvater betreute sie George Gamow. In den drei Jahren, in denen sie an ihrer Dissertation schrieb, wurde ihr unter anderem einmal untersagt, ihren Doktorvater in seinem Büro zu treffen, weil Frauen diesen Bereich der Universität nicht betreten durften. Ihren Doktortitel erlangte sie 1954 mit einer Dissertation, in der sie die Theorie aufstellte, dass Galaxien in Clustern oder Haufen auftreten, statt zufällig über das Universum verteilt zu sein. Auch dieser Gedanke Rubin war zu diesem Zeitpunkt kontrovers zum allgemeinen Wissensstand und wurde in den folgenden 20 Jahren nicht weiter verfolgt.
Nach ihrer Promotion arbeitete Rubin in den folgenden elf Jahren an diversen Instituten als Lehrerin, Forschungsastronomin und Assistenzprofessorin; da sie auch insgesamt vier Kinder hatte, übte sie große Teile ihres Berufs von zu Hause aus. 1963 arbeitete sie für ein Jahr mit Geoffrey und Margaret Burbidge zusammen an der Erforschung der Galaxienrotation am McDonald Observatory in Texas. Mit Burbidge sollte sie auch danach der allgemeine politische Einsatz für Frauen in der Wissenschaft verbinden. 1965 wurde Rubin Angestellte der Carnegie Institution of Washington, heute Carnegie Institution of Science. Im Rahmen dieser Anstellung ersuchte sie auch um die Möglichkeit, am Palomar Observatory in San Diego zu arbeiten. Dort angekommen, musste sie feststellen, dass es vor Ort keine „facilities“, also Schlaf- und Sanitärräume für Frauen gab. Vera Rubin schnitt ein Stück Papier in Form eines Rocks aus, klebte dieses über eine der ‚männlichen‘ Türschilder und schuf so die Verhältnisse, die ihr einen Aufenthalt erleichtern würden (so schildert es dieser Artikel in The Atlantic).
Ebenfalls bei ihrer Tätigkeit an der Carnegie Institution traf sie auf Kent Ford, der astronomische Instrumente herstellte. Unter anderem hatte er ein optisches Spektrometer gebaut, das die Spektren jener Himmelskörper optisch verstärkte, die bisher zu dunkel waren, um sie zu deuten. Mit den Instrumenten von Ford machte Rubin unter anderem an der Andromedagalaxie unter anderem eine Beobachtung, die als Rubin-Ford-Effekt (Link Englisch) bekannt wurde: Eine Anisotropie in der Expansion des Universums, beobachtet allerdings an einer begrenzten Anzahl Galaxien und heute zu einem nur augenscheinlichen, nicht tatsächlichen Phänomen erklärt. (Eine Anisotropie ist eine Eigenschaft, die von der Richtung einer Bewegung abhängig ist.) Die Ergebnisse ihrer Forschungen wurden jedoch wieder einmal als zu kontrovers von der wissenschaftlichen Gemeinschaft abgelehnt. 1976 veröffentlichte Rubin eine Arbeit, in dem sie die Theorie einer Pekuliargeschwindigkeit nicht nur für Sterne, sondern auch für Galaxien aufstellte, die anfangs abgelehnt, aber heute als ‚large streaming scale‚ akzeptiert ist.
Für eine kurze Zeit befassten sich Rubin und Ford auch mit Quasaren, die gerade erst entdeckt worden waren. Sie wandte sich jedoch lieber einem Forschungsbereich zu, in dem sie hoffte, weniger Ablehnung zu erfahren, und untersuchte schließlich die Rotation von Galaxien und ihren Außenbezirken. Sie beobachtete hierbei flache Rotationskurven im Gegensatz zu den wieder abfallenden Kurven, die nach optisch erfassbaren Tatsachen zu erwarten waren. In den Außenbezirken müsste sich eine Galaxie nach dieser Erwartung langsamer drehen – stattdessen beobachtete Rubin, dass sich die äußeren Arem von Spiralgalaxien ebenso schnell um den Mittelpunkt drehen wie die inneren Bereiche. Außerdem drehen sich die Galaxien so schnell, dass sie auseinanderfliegen müssten, wenn der einzige Zusammenhalt, den sie haben, die Schwerkraft ihrer Sterne wäre. Diese beiden Beobachtungen ließen Vera Rubin schließen, dass diese Galaxien Dunkle Materie enthalten müssen und von einem Halo, einem ‚Heiligenschein‘ aus Dunkler Materie umgeben sein müssen. (Der Artikel zu Dunkler Materie enthält auch die schöne Videodatei, welche Bewegung ohne Dunkle Materie zu erwarten wäre und welche tatsächlich vorgefunden wird.) Nach ihren Berechnungen müssten Galaxien etwa fünf bis zehn Mal so viel Dunkle wie gewöhnliche Materie enthalten. Mit ihren Forschungsergebnissen lieferte sie die erste überzeugende Hinweise für diese Theorie, die in den 1930ern erstmals von zwei Astronomen, Jan Hendrik Oort und Fritz Zwicky postuliert wurde.
Später sollte Vera Rubins These durch die Entdeckung der kosmischen Hintergrundstrahlung und des Gravitationslinseneffektes bestätigt werden. Ihre ebenfalls auf diesen Ergebnissen basierende Theorie über nicht-Newtonsche Schwerkraft, die auf Galaxien wirkt, ist nicht wissenschaftlich akzeptiert oder bewiesen. Zur gleichen Zeit erforschte Vera Rubin das Phänomen des Gegenrotation in Galaxien und lieferte erste Nachweise dafür, dass Galaxien durch ihre Bewegung im Universum fusionieren, sowie zum Prozess, mit welchem Galaxien entstehen.
Vera Rubin hatte vier Kinder, denen sie nach deren Aussagen vorlebte, dass „ein Leben in der Wissenschaft Spaß mache und erstrebenswert sei“ (Quelle: Wiki), was alle vier veranlasste, ebenfalls Wissenschaftler:innen zu werden. Gemeinsam mit ihrer Kollegin Burbidge setzte sich Rubin für die Repräsentation von Frauen in wissenschaftlichen Institutionen ein, die wenigen weiblichen Mitglieder in der National Academy of Science nannte sie „das Traurigste in ihrem Leben“. Sie starb am 25. Dezember 2016 an Komplikationen ihrer Demenzerkrankung.
Die Carnegie Institution of Science rief ihr zu Ehren ein Forschungsstipendium für Postdoktoranden ins Leben; die Division on Dynamical Astronomy der American Astronomical Society verleiht den Vera Rubin Early Career Prize. Im Dezember 2019 wurde das Large Synoptic Survey Telescope, das auf einem Gipfel des Cerro Panchon in Chile gebaut wird, als Vera C. Rubin Observatory umbenannt. Es soll im kommenden Jahr 2021 first light haben, endgültig fertiggestellt wird es nach Plan 2022.
25. Juli 1920: Rosalind Franklin Quasi das Postergirl des Matilda-Effekts; von ihr nutzten Watson und Crick ungefragt und unauthorisiert Röntgenstrukturanalysen, die ihnen zur Entschlüsselung der DNA-Struktur verhalfen. Jahrelang wurde in wissenschaftlichen und biografischen Texten herablassend mit ihr umgegangen.