Kategorie: Wissenschaft+Forschung

Anna Thynne

* 1806 • † 22. April 1866

Anna Thynne (Link Englisch), offizielle Ansprache Lady John Thynne, war ursprünglich Geologin aus Passion, doch dann begegnete sie 1846 – bei einem Aufenthalt in Torquay, möglicherweise – der Kaltwasserkoralle Madrepore. Dieses Wesen, das aussah wie ein lebloser Stein, aber doch atmete und sich ernährte, faszinierte sie so sehr, dass sie beschloss, ein Exemplar mit in ihr Heim in London zu nehmen. Dafür nähte sie eine Koralle mit Nadel und Faden an einen Schwamm und setzte dieses Gebilde in einen Steinguttopf (oder Steinzeug – aus dem Text geht dieser feine Unterschied nicht hervor). Zu Hause angekommen, setzte sie die Koralle in eine Glasschüssel und wechselte darin das Wasser täglich. Als ihr Vorrat an Meerwasser aufgebraucht war, ließ sie einen Angestellten den Wasserwechsel vor einem offenen Fenster vornehmen, um die Madrepore zu belüften.

Nach einem Jahr fügte sie Wasserpflanzen zu den Korallen hinzu, zwei Jahre später hatte sie das erste stabile, dauerhafte Aquarium für marine Lebensformen eingerichtet. Mit diesem Ergebnis und ihren Erkenntnissen inspirierte sie Philip Henry Gosse, der 1853 am Bau des ersten Aquariums des Londoner Zoo Regent’s Park beteiligt war.

Eliza Maria Gordon-Cumming

* 1795 • † 21. April 1842

Eliza Maria Gordon-Cumming (Link Englisch) kam im schottischen Inveraray als Tochter eines Politikers und einer Romanautorin zur Welt. Sie hatte ein großes künstlerisches Talent, das sie darauf verwendete, Fossilien zu zeichnen. Sie begann 1839, am Moray Firth, die Fossilien von Fischen zu sammeln, die vor allem aus dem Devon (vor etwa 400 Millionen Jahren) stammten. Sie stellte auch Spekulationen über die Entwicklungen der Fische an, die sich später als falsch herausstellen sollten, vor allem aber beeindruckte sie andere Wissenschaftler mit der Detailtreue und Sorgfalt, mit der sie ihre Illustrationen anfertigte. Gordon-Cumming stand in Korrespondenz mit mehreren bekannten Geologen ihrer Zeit; Louis Agassiz, William Buckland und Roderick Murchison besuchten sie in Schottland, um ihre Sammlung zu sehen. Agassiz benannte einen Knochenfisch nach ihr, er bestimmte zahlreiche ihrer Funde.

Nebenher hatte Eliza Marie Gordon-Cumming auch noch 13 Kinder, sie starb mit 47 Jahren an Komplikationen nach der letzten Geburt. Ihre Sammlung befindet sich heute in drei Museen, dem National Museum of Scotland, dem Natural History Museum und dem Museum der Universität Neuchâtel.

28/2020: Nettie Stevens, 7. Juli 1861

frauenfiguren nettie stevens
Nettie Stevens at work at the Naples Zoological Station in 1909.
By Bryn Mawr College Special Collections – source, Public Domain

Der Vater von Nettie Stevens war Zimmermann, der nach dem frühen Tod seiner Ehefrau – sie starb, als Nettie drei Jahre alt war, kurz nach der Geburt der jüngeren Schwester – sein zwei überlebenden Kinder alleine versorgen musste. Nach einem Umzug von Vermont nach Massachusetts wurde er allerdings mit seinem Handwerksunternehmen so erfolgreich, dass er beiden Töchtern zumindest die High School finanzieren konnte. 1880 machte Nettie dort ihren Abschluss, dann arbeitete sie in New Hampshire als Lehrerin für Zoologie, Physiologie, Mathematik, Englisch und Latein. Nach drei Jahren in diesem Beruf hatte sie geng Geld gespart, um an die Universität zurückzukehren. An der Westfield Normal School (heute Westfield State University) absolvierte sie ein Studienprogramm, das eigentlich auf vier Jahre ausgelegt war, innerhalb von zwei Jahren; im Anschluss daran arbeitete sie wieder als Lehrerin.

Erst ein gutes Jahrzehnt später konnte Nette Stevens sich von gespartem Geld ein tiefergehendes Studium leisten. 1896 schrieb sie sich an der Stanford University ein und erreichte 1899 einen Bachelor-, ein Jahr später einen Master-Abschluss in Biologie. Im Laufe ihrer Studien hatte sie begonnen, sich mit Histologie zu befassen, für ihr Doktorandenstudium in diesem Fach wechselte sie 1900 an das Bryn Mawr College, denn dort war Edmund Beecher Wilson Leiter der biologischen Fakultät gewesen, den Stevens bewunderte, und auch zu seinem Nachfolger Thomas Hunt Morgan schaute sie auf. Sie konnte dank eines Stipendiums im Rahmen ihres Studiums in Neapel und Würzburg Forschung betreiben, bevor sie mit Morgan als Doktorvater ihre Dissertation einreichte. Das Thema ihrer Arbeit war die Zellregeneration in einfachen Mehrzellern, die Entwicklung von Spermien und Eiern, Urkeimzellen von Insekten und die Zellteilung in Seeigeln und Würmern, sie erlangte damit 1903 ihren Doktortitel. Bryn Mawr bleib für ihr weiteres restliches Leben ihre Wirkungsstätte – ihr Ziel war es, an ihre Alma Mater als Professorin fest angestellt zu werden. Zunächst blieb sie als Lehrkraft für experimentelle Morphologie, 1904 begann sie einjähriges ihr Postdoc am Carnegie Institute of Science in Washington, Edmund B. Wilson und Thomas H. Morgan schrieben ihr für diese Position die benötigten Empfehlungen. Stevens erhielt ein Stipendium für ihre Erforschung der Vererbung, insbesondere wollte sie die Mendelschen Regeln (damals noch ‚Gesetze‘) überprüfen hinsichtlich ihrer Gültigkeit für die Geschlechtsdetermination.

Das erste Tier, das sich Stevens für ihre Untersuchungen vornahm, war der Mehlkäfer (von dem die Mehlwürmer gelegt werden) Tenebrio molitor. In den Zellen dieser Insekt entdeckte Stevens zum ersten Mal das Chromosom, das sich nach ihren Beobachtungen auf die unterschiedlichen Geschlechter der erwachsenen Tiere auswirkte (sie nannte es jedoch damals noch nicht das Y-Chromosom). Sie weitete ihre Forschung auf andere Insekten aus, unter anderem auf die Taufliege Drosphila melanogaster, die sie fortan in ihren Labors züchtete. Nettie Stevens war es, die erkannte, wie gut diese Art aufgrund der kurzen Lebenszyklen, einem kleinen Chromosomensatz und einer großen Anzahl Nachkommen pro Befruchtung für genetische Untersuchungen geeignet war, und tatsächlich war sie es auch, die Thomas H. Morgan ebenfalls davon überzeugte. Noch heute gilt Drosophila als ideales Forschungsobjekt und Morgan wird zumeist als Begründer dieser Praxis geführt.

Zur Zeit von Stevens‘ Forschungen herrschte noch die Ansicht, dass das Geschlecht eines Kindes im Mutterleib von der Umwelt oder dem Verhalten der Mutter beeinflusst wurde – in jedem Fall lag es in der „Verantwortung“ der Mutter, mit welchem Geschlecht ein Kind auf die Welt käme. Clarence Erwin McClung hatte kurze Zeit vor Nettie Stevens die Vermutung geäußert, dass das Geschlecht eines Lebewesens durch das X-Chromosom in den Keimzellen bestimmte würde, doch Thomas H. Morgan und auch Edmund B. Wilson bestritten dies zunächst. Während Stevens bei ihrer Erforschung der Entstehung des chromosomalen Geschlechtes die Keimzellen beider Geschlechter untersuchte, erforschte Wilson allein an Spermien die Spermatogenese; er sollte das damit begründen, dass Eizellen zu fetthaltig für den Färbeprozess seien und deswegen nicht untersucht werden könnten. Nettie Stevens fand hingegen in den Zellen ihrer Taufliegen Paare mit einem großen und einem kleinen Chromosom, Paare mit zwei großen Chromosomen und einzelne große Chromosomen (XO), dass jedoch nur die Individuen mit einem Groß-Klein-Paar den männlichen Phänotyp aufwiesen. Sie schloss daraus, dass es das heute so genannte Y-Chromosom war, dass den geschlechtlichen Phänotyp bestimmte (was Stevens noch nicht wissen konnte: dass dieser Phänotyp dann auch noch anderen genetischen Einflüssen unterliegt, siehe Intergeschlechtlichkeit). Der Artikel, den sie darüber schrieb, brachte ihr einen Preis von $1.000,- ein für den „besten wissenschaftlichen Artikel von einer Frau geschrieben“, und das Carnegie Institute veröffentlichte ihre Arbeit in den „Studien zur Spermatogenese“. Doch weder von ihren männlichen Vorbilden noch von der wissenschaftlichen Gemeinschaft wurde sie als Forscherin und Entdeckerin anerkannt, noch weniger gewürdigt. Edmund B. Wilson überarbeitete, nachdem er Stevens Forschungsergebnisse gelesen hatte, seine eigene Arbeit dahingehend, dass sie zu Stevens Ergebnissen passen, und kam ihr dann mit der Veröffentlichung seiner Ergebnisse zuvor – er dankte ihr für ihre Entdeckung in einer Fußnote. 1906 wurden Wilson und Thomas H. Morgan eine Einladung, auf einer Konferenz über ihre Entdeckungen der Geschlechtsdetermination zu sprechen, doch Nettie Stevens wurde übersehen.

1908 erhielt Stevens noch ein Stipendium von der American Association of University Women und 1912 wurde ihr von Bryn Mawr nach einer Dekade als außerordentliche Professorin endlich eine Stelle als festangestellte Professorin ohne Lehrverpflichtung angeboten. In ihrer kurzen Zeit als Wissenschaftlerin hatte sie bis dahin 38 Publikationen veröffentlicht, doch sie konnte die lang ersehnte Stelle nicht mehr antreten: Am 4. Mai 1912 starb sie mit nur 51 Jahren an Brustkrebs.

Noch in seinem Nachruf rückte Thomas H. Morgan die eigentliche Vorreiterin seiner wissenschaftlichen Erfolge auf die Seitenlinie. In seinem Nachruf schrieb er, sie habe „Anteil an einer Entdeckung von Bedeutung“ gehabt, behauptete allerdings, sie habe McClungs Fehlannahme bestätigt, dass X-Chromosom sei für den geschlechtlichen Phänotyp verantwortlich – wohingegen sie gerade festgestellt hatte, dass es das kleinere Y-Chromosom sein musste. Edmund B. Wilson unvollständige Forschungsergebnisse seien „eine gemeinsame Entdeckung“ mit Stevens gewesen, eine Aussage, die Wilson später, wiederum in einer Fußnote, korrigierte. Auch habe es ihr „zeitweise an Inspiration gefehlt, die die reine Tatsache einer Entdeckung für eine breitere Sichtweise nutzt“ – es war ihm womöglich tatsächlich nicht bewusst, dass dieser Mangel an Inspiration darin begründet lag, dass sie vom anregenden Austausch mit Kollegen, etwa auf Konferenzen, ausgeschlossen war.

Thomas H. Morgan gewann 1933 den Nobelpreis für Medizin für Erkenntnisse zur Vererbung, die zu großen Teilen auf den intensiven Forschungen von Nettie Stevens basierte.

1994 wurde sie in die National Women’s Hall of Fame aufgenommen. 2017 benannte die Westfield State University einen Gebäudekomplex nach ihr, in dem einige MINT-Fachbereiche untergebracht sind.

FemBio und Vox sind auch verärgert über den Matilda-Effekt.

*

Ebenfalls diese Woche

7. Juli 1860: Alice Johnson (Link Englisch)
1884 wurde eine Arbeit dieser britischen Zoologin als erstes Schriftstück einer Frau im Protokoll der Royal Society erwähnt. Sie beschäftigte sich auch mit Telepathie.

10. Juli 1724: Eva Ekeblad
Weil sie sich mit den Möglichkeiten des Kartoffelanbaus in Europa beschäftigte, gilt die schwedische Adlige als Agrarwissenschaftlerin. Sie entwickelte Methoden zur Gewinnung von Stärke und Alkohol aus Kartoffeln, unabhängig davon auch ein Verfahren zum Bleichen von Textilien. Sie war 1748 die erste Frau, die in der Königlich Schwedischen Akademie der Wissenschaften aufgenommen wurde, und blieb die einzige bis 1910, als Marie Curie ebenfalls aufgenommen wurde.

12. Juli 1913: Mildred Cohn
Diese amerikanische Biochemikerin und Biophysikerin entwickelte Methoden und Anwendungen in der Kernspinresonanzspektroskopie, die es ermöglichten, metabolische Prozesse auf molekulaler Ebene sichtbar zu machen.

Amelia Griffiths

* 1768 • † 1858

Die Strand“räuberin“ Amelia Griffiths (Link Englisch) sammelte nicht nur Wertgegenstände, sondern auch Algen am Strand und brachte dabei eine Sammlung an Exemplaren zusammen, die als wissenschaftlich wichtig erachtet wird. Sie hielt Briefkontakt mit dem irischen Phykologen William Henry Harvey, aus ihrer Korrespondenz erwuchs eine Freundschaft und er widmete ihr 1849 sein Handbuch der britischen Algen. Er schrieb über sie:

Sollte ich dazu neigen, irgendjemanden zu verherrlichen, wäre es Mrs. Griffiths, der ich einiges verdanke an der geringen Bekanntschaft, die ich mit den Variationen habe, denen diese Pflanzen unterliegen, und die stets bereit ist, mich mit den Früchten von Pflanzen zu versorgen, die jeder andere für unfruchtbar hält. Sie ist zehntausend andere Sammler wert.

übersetzt nach dem verlinkten Wikipediabeitrag

Sie entdeckte bei ihren Strandläufen unter anderem eine Art des Roten Horntangs, nämlich ceramium botryocarpum im Jahr 1844. Der schwedische Botaniker Carl Adolph Agardh benannte eine Algengattung nach ihr. Und die deutsche Wikipedia hat einen deutlichen Mangel an Beiträgen über Algen. Dafür weiß das Royal Albert Memorial Museum Exeter etwas mehr über sie, etwa, dass sie einen Pastor in Devon geheiratet hatte und mit fünf Kindern unter mysteriösen Umständen verwitwete, und dass sie ihre Algensammlung bis ins hohe Alter weiterbetrieb.

27/2020: Marian Farquharson, 2. Juli 1846

Marian Sarah Ogilvie Farquharson erfuhr als Tochter eines protestantischen Geistlichen eine breitgefächerte Bildung im eigenen Elternhaus. Sie interessierte besonders für Botanik, insbesondere die einheimische Flora in England. Mit 35 wurde sie Mitglied des Epping Forest and Essex‘ Naturalists Field Club und veröffentlichte einen Taschenführer über die Farne der britischen Inseln.

Verhältnismäßig spät für ihre Zeit heiratete sie 1883, mit 37 Jahren, den Landbesitzer Robert Francis Ogilvie Farquharson und zog zu ihm nach Alford, Aberdeenshire, im Norden Schottlands. Dort wurde sie Mitglied zweier naturwissenschaftlicher Vereinigungen und beschäftigte sich weiterhin mit der regionalen Pflanzenwelt; 1885 wurde ihr Artikel über Moose in der Zeitschrift der British Association for the Advancement of Science veröffentlicht. Im gleichen Jahr wurde sie zum Mitglied der Royal Microscopical Society gewählt, doch als Frau durfte sie weder an den Treffen der Gesellschaft teilnehmen noch hatte sie ein Abstimmungsrecht.

Nachdem 1890 ihr Ehemann gestorben war, wurde Ogilvie Farquharson politisch aktiv. Sie gründete die Scottish Association for Promotion of Women’s Public Work, mit der sie dafür kämpfte, Frauen als gleichberechtigte Mitglieder von Gelehrtengesellschaften zuzulassen. Noch im gleichen Jahr, in dem sie Witwe wurde, sprach sie auf einer Konferenz in Paris über die Rolle der Frau in der Wissenschaft, beim Internationalen Frauenkongress 1899 in London (Link Englisch) war sie für den Bereich der Naturwissenschaften mitverantwortlich.

Am 18. April 1900 schrieb sie einen Brief an die Linnean Society of London mit der Bitte, hinreichend qualifizierte Frauen in die Gesellschaft aufzunehmen und sie an den Treffen teilhaben zu lassen. Diese Bitte wurde abgeschmettert mit der Erklärung, dass derartige Anträge nur von Mitgliedern gestellt werden könnten. Also wandte sich Ogilvie Farquharson an den ehemaligen Präsidenten der Gesellschaft, John Lubbock, der dann auch beim Treffen der Gesellschaft am 7. Juni 1900 diesen Vorschlag vortrug. Die Entscheidung wurde zunächst vertagt auf das nächste Treffen, bei dem dann festgestellt wurde, dass die Charter die Aufnahme von Frauen nicht vorsähe und der Vorschlag deswegen abzulehnen sei.

Diesen ersten beiden Versuchen, Frauen als Mitglieder in der Linnean Society zuzulassen, folgten in den kommenden vier Jahren mehrere weitere Anläufe, bei denen sich Marian Farquharson immer wieder der Unterstützung privilegierter Alliierter bedienen musste – und dennoch auf massive Widerstände stieß. So zog sie den Professor für Naturgeschichte Marcus Manuel Hartog hinzu, der sich im November 1900 beim Rat der Gesellschaft für ihr Anliegen einsetzte, doch diese wiederum ließ durch einen Anwalt ermitteln, dass die Charter in ihrer vorliegenden Form die Aufnahme von Frauen verhindere.

Im April 1901 stellte Ratsmitglied Frederick DuCane Godman und ein weiterer Mann eine Anfrage im Sinne Farquharsons, doch sie erhielten schlicht keine Antwort; der nächste Antrag am 7. November 1901, durch Joseph Reynolds Green, wurde auf unbestimmte Zeit vertagt. Green erneuerte seinen Antrag einen Monat später, am 19. Dezember, mit der Versicherung, eine beträchtliche Anzahl der Mitglieder würden das Anliegen Farquharsons unterstützen. Der Rat der Gesellschaft verlangte einen Beweis für diese Behauptung. Also legte Green im Januar 1902 eine Unterschriftensammlung vor, die endlich etwas in Bewegung setzte: Der Rat der Gesellschaft sandte im darauffolgenden März an alle 740 Mitglieder ein Rundschreiben aus, in dem sie nach ihrer Haltung zur Aufnahme von Frauen befragt wurden. 313 Mitglieder antworteten gar nicht erst, 126 sprachen sich dagegen aus, doch 301 Mitglieder befürworteten diesen Vorstoß.

Dennoch verstrich das Jahr ohne weitere Entwicklung, erst am 15. Januar 1903 fand ein außerordentliches Treffen des Gesellschaftsrates unter Leitung des stellvertretenden Präsidenten statt, bei dem über mögliche Zusätze und Änderungen der Charter abgestimmt wurde. Über den Zusatz, dass Mitgliedschaft „ohne Unterschied des Geschlechts“ möglich sein sollte, wurde gesondert abgestimmt, dabei sprachen sich 54 der Anwesenden dafür und 17 dagegen aus.

Fast ein ganzes weiteres Jahr verging, bevor Ende 1903 ein offizielles Bittgesuch für diese Änderung beim Rat der Gesellschaft eingereicht wurde. Am 8. April 1904 wurde die neue Charter gewährt, die den entscheidenden Zusatz enthielt – doch die neue Satzung, die darauf aufbaute, wurde erst am 3. November 1904 von den Mitgliedern angenommen. Immerhin erfolgte dann bereits innerhalb von zwei Wochen, am 17. November 1904, der Vorschlag, 16 Frauen in die Linnean Society aufzunehmen, darunter Ethel Sargant und selbstverständlich Marian Olgivie Farquharson. Am 15. Dezember 1904 wurden 15 Frauen zu Mitgliedern gewählt und am 19. Januar 1905 offiziell aufgenommen.

Alle vorgeschlagenen Frauen, außer Farquharson.

Es dauerte drei weitere Jahre, bis die inzwischen 62-jährige erneut als Mitglied vorgeschlagen und dann auch aufgenommen wurde. Allerdings ging es der Vorkämpferin, die unzählige Briefe und Anträge an die Gelehrtengesellschaft geschrieben und niemals aufgegeben hatte, inzwischen gesundheitlich sehr schlecht und sie starb am 20. April 1912, ohne ihre Mitgliedschaft in der Gesellschaft zu bestätigen.

*

Ebenfalls diese Woche

4. Juli 1868: Henrietta Swan Leavitt
Über diese Astronomin, Teil von ‚Pickerings Harem‘, schrieb ich 2017.

Margaret Bryan

18.-19. Jahrhundert

Von Margaret Bryan ist bekannt, dass sie verheiratet war und zwei Töchter hatte, außerdem sei sie eine talentierte Schulleiterin gewesen. Drei verschiedenen Schulen stand sie im Lauf ihres Lebens mindestens vor: Einer Mädchenschule in Blackheath, einer im Londoner West End in der Nähe des Hyde Park und einer in Margate an der Ostseeküste Englands.

1797 veröffentlichte Bryan zunächst im Quartoformat ihr Lehrbuch A compendious System of Astronomy‚ (Link Englisch), mit dem Titelbild, das sie und ihre beiden Töchter zeigt. Der Stich von William Nutter entstand nach einer Miniatur von Samuel Shelley (Link Englisch). Später kam das Buch auch in einer Fassung im kleineren Oktavformat heraus.

1806 folgte wiederum im Quartoformat ein Lehrbuch ‚Lectures on Natural Philosophy‘, das 13 Lektionen enthielt zu den Themen Hydrostatik, Optik, Pneumatik und Akustik. Neun Jahre später erschien wiederum in einem dünnen Oktavformat ‚Astronomical and Geographical Class Book for Schools‘, und damit endet das Wissen über Margaret Bryan.

26/2020: Maria Goeppert-Mayer, 28. Juni 1906

Maria Goeppert wurde in Katowice, damals Preußen, in eine Familie von Professoren geboren. Als sie 10 Jahre alt war, zog sie mit ihren Eltern nach Göttingen. Dort besuchte sie eine höhere Schule, die speziell Mädchen für ein Universitätsstudium vorbereiten sollte; mit 17, ein Jahr früher als ihre Komiliton:innen, machte sie als eines von drei oder vier Mädchen das Abitur.

Zunächst studierte sie an der Universität Göttingen Mathematik, zu dieser Zeit um 1924 müsste sie auch Emmy Noether dort angetroffen haben. Nach drei Jahren Studium wechselte Goeppert jedoch zur Physik, in der sie nach weiteren drei Jahren ihre Dissertation über die Theorie der Zwei-Photonen-Absorption schrieb. Diese Theorie, dass ein Molekül oder Atom zur gleichen Zeit (innerhalb von 0,1 Femtosekunde) zwei Photonen aufnehmen kann und dabei in einen energetisch angeregten Zustand übergeht, konnte zu dieser Zeit nicht experimentell nachgewiesen werden. Dieses Ereignis ist extrem unwahrscheinlich: Die Absorption eines Photons in einem Molekül oder Atom geschieht in etwa einmal pro Sekunde unter guten Bedingungen, das heißt bei hoher Lichteinstrahlung. Die gleichzeitige Absorption zweier Photonen tritt hingegen unter den gleichen Bedingungen nur alle 10 Millionen Jahre auf. Erst 1961 konnte Goepperts Theorie dank der Erfindung des Lasers nachgewiesen werden, die Einheit, in der die Wahrscheinlichkeit einer Zwei-Photonen-Absorption gemessen wird, heißt ihr zu Ehren GM (Goeppert-Mayer). Ihre Prüfer im Rigorosum waren Max Born, James Franck und Adolf Windaus, alles drei zu diesem Zeitpunkt oder spätere Nobelpreisträger. Eugene Wigner, ebenfalls Nobelpreisträger, bezeichnete ihre Arbeit später als „Meisterwerk der Klarheit und Greifbarkeit“.

Im gleichen Jahr, in dem sie ihren Doktortitel errang, hatte sie auch Joseph Edward Mayer geheiratet, einen Fellow der Rockefeller Foundation und Assistent von James Franck. Mit ihm zog sie nach ihrer Promotion in die USA, wo Mayer als außerordentlicher Professor an der Johns Hopkins University lehrte. Goeppert-Mayer konnte dort keine Anstellung finden, denn die Hochschule hatte strenge Nepotismus-Regeln, die die gleichzeitige Beschäftigung von Ehepaaren untersagten. Diese waren ursprünglich eingerichtet worden, um Gönnerschaft zu unterbinden, doch inzwischen hielten sie hauptsächlich die Ehefrauen der Professoren von beruflicher Tätigkeit auf dem Campus ab. Goeppert-Mayer konnte sich schließlich gegen sehr kleines Gehalt im Fachbereich für Physik an der deutschen Korrespondenz beteiligen, so hatte sie auch Zugang zu den Laboren. In dieser Zeit arbeitete sie mit Karl Herzfeld an seinen Forschungen zur Quantenmechanik, sie unterrichtete auch unentgeltlich und schrieb eine Arbeit über doppelten Betazerfall. Sie kehrte bis 1933 noch dreimal nach Göttingen zurück, unter anderem um dort mit Max Born an einem Artikel für das Handbuch der Physik zu arbeiten. 1933 verloren Born und James Franck aufgrund der Judenverfolgung unter der faschistischen Regierung Deutschlands ihre Stellen an der Göttinger Universität, James Franck folgte seinem ehemaligen Assistenten nach Baltimore.

1937 wurde Mayer allerdings von der Johns Hopkins Universität entlassen, die Gründe dafür sind unklar. Mayer vermutete Misogynie, nämlich dass der Dekan es nicht gerne sähe, wie frei Mayer seiner Frau Zugang zu den Laboren gewährte. Herzfeld stimmte ihm zu, möglicherweise fühle sich aber auch das amerikanische Kollegium von „zu vielen Deutschen“ (das Ehepaar Goeppert-Mayer, Herzfeld und Franck) überrannt. Es soll auch Beschwerden über die Inhalte des Chemie-Unterrichts gegeben haben, den Goeppert-Mayer hielt: Sie spreche zu viel über moderne Physik. Goeppert-Mayer lehrte noch bis 1939 in Baltimore, dann wechselte das Ehepaar gemeinsam an die Columbia University in New York. Joseph Mayer konnte dort als Professor lehren, Maria Goeppert-Mayer bekam hier zwar ein eigenes Büro, doch für ihre Tätigkeit an der Fakultät wiederum kein Gehalt.

An der Columbia University freundete sich Goeppert-Mayer mit dem Chemiker Harold Urey und dem Physiker Enrico Fermi an und schloss sich deren Forschungen an, zu den Valenzelektronen der bis dahin noch unentdeckten transuranischen Elementen. Die Anzahl der Valenzelektronen, das heißt der Elektronen auf der äußersten Schale eines Elements, die an chemischen Verbindungen beteiligt sein können, bestimmen die Zugehörigkeit zu den unterschiedlichen Gruppen des Periodensystems und lassen Vermutungen über ähnliche chemikalische Eigenschaften zu. Basierend auf dem Thomas-Fermi-Modell, das die Elektronenhülle wie eine Gaswolke interpretiert, stellte Goeppert-Mayer die Voraussage auf, dass die Elemente, die im Periodensystem hinter dem Uran folgen müssten, zur Gruppe der Metalle der Seltenen Erden gehören würden. Diese Voraussage sollte sich als wahr herausstellen.

1941 wurde Maria Goeppert-Mayer zur Fellow der American Physical Society und im Dezember dieses Jahres trat sie ihre erste bezahlte Lehrtätigkeit am Sarah Lawrence College an. Nachdem die USA in den Zweiten Weltkrieg eingetreten waren, schloss sie sich im Folgejahr in Teilzeit dem Manhattan-Projekt an. Ihre Aufgabe wurde es, einen Weg zu finden, das Isotop 235U, einen wichtigen Spaltstoff, in natürlichem Uran auszusondern. Dafür untersuchte Goeppert-Mayer die chemischen und thermodynamischen Eigenschaften von Uranhexafluorid (Uran(VI)-fluorid), einer Verbindung von Uran und Fluor. Sie erwog die Möglichkeit, das gewünschte Isotop mit Hilfe einer photochemischen Reaktion aus dem Stoff auszufällen, doch dies war zu dem Zeitpunkt noch nicht praktikabel; auch hier wurde die Erfindung des Lasers notwendig, um Goeppert-Mayers Theorien in die Praxis umzusetzen.

Ihr Freund Edward Teller holte sie auch kurzzeitig ins Team seines Opacity Project, das die Erschaffung einer Superbombe (Link Englisch) anstrebte. Ihr Mann wurde an die Front im Pazifik berufen, und Goeppert-Mayer beschloss, die beiden Kinder in New York zu lassen und mit Teller in Los Alamo am Project Y zu arbeiten.

Nach dem Ende des Krieges wurde Joseph Mayer Professor für Chemie an der University of Chicago, Maria Goeppert-Mayer wurde von der Hochschule als freiwillige außerordentliche Professorin eingestellt. Teller folgte ihr nach Illinois, um die Entwicklung thermonuklearer Waffen voranzutreiben. Als ihr eine Teilzeitstelle am Argonne National Laboratory angeboten wurde, als leitende Physikerin in der Abteilung für theoretische Physik, antwortete sie erstaunlicherweise: „Ich verstehe nichts von Kernphysik!“ Sie trat die Stelle jedoch an. Außerdem programmierte sie den ENIAC des Aberdeen Proving Ground auf eine bestimmte Vorgehensweise für Schnelle Brüter.

Ihre wichtigeste, erfolgreichste Arbeit leistete Goeppert-Mayer trotz dieser vielseitigen Einsätze in den 1940ern. Während sie an der University of Chicago und dem Argonne angestellt war, entwickelte sie ein mathematisches Modell für den Aufbau des Schalenmodells, das sie 1950 veröffentlichte. Sie erklärte, warum eine bestimmte Anzahl Nukleone (Protonen und Neutronen) in Atomkernen besonders häufig vorkamen und besonders stabil sind. Diese Zahlen nannte Eugene Wigner die ‚Magischen Zahlen‚, die Reihe der „stabilen“ Protonen- und Neutronen-Anzahlen lautet 2, 8, 20, 28, 50, 82 und 126. Das Schalenmodell war für die Elektronen-aufenthaltswahrscheinlichkeitsräume des Atoms bereits erfolgreich, doch vom Atomkern bestand zu diesem Zeitpunkt noch ein anderes Modell, welches jedoch nicht die Inseln der Stabilität in den Elementen erklärte. Im Gespräch mit Enrico Fermi stellte dieser Goeppert-Mayer die Frage, ob es einen Hinweis auf Spin-Bahn-Kopplung gäbe – einen Zusammenhang des Spin, also der Eigendrehung eines Teilchens, und seiner Bahn, also seiner Bewegung innerhalb des Atoms, der sich in der Stärke der Wechselwirkung des Teilchens bemerkbar macht. Diese Kopplung war für Elektronen bekannt, doch angestoßen von Fermis Frage stellte Goeppert-Mayer die Theorie auf, dass dieser Effekt auch im Atomkern wirke und konnte so die Bedeutung der ‚magischen Zahlen‘ in der Kernphysik erklären. Sie erläuterte es kurz und anschaulich wie folgt:

Denken Sie an einen Raum voller Walzertänzer:innen. Nehmen wir an, sie durchtanzen den Raum in Kreisen, jeder Kreis umschlossen von einem weiteren Kreis. Nun stellen Sie sich vor, Sie könnten zweimal so viele Tänzer:innen in einem Kreis unterbringen, indem Sie ein Paar mit und das andere Paar entgegen dem Uhrzeigersinn tanzen lassen. Nun bringen Sie noch weitere Variationen ein; alle Paare drehen sich um sich selbst wie Kreisel, während sie durch den Raum kreisen, jedes Paar dreht sich also um sich selbst (twirling) und durch den Raum (circling). Aber nur einige von denen, die gegen den Uhrzeigersinn durch den Raum tanzen, drehen sich auch im Uhrzeigersinn um sich selbst. Die anderen drehen sich im Uhrzeigersinn um sich selbst, während sie gegen den Uhrzeigersinn durch den Raum tanzen. Das gleiche ist wahr für die, die im Uhrzeigersinn durch den Raum tanzen: Einige drehen sich im Uhrzeigersinn um sich selbst, andere dagegen.

Übersetzt nach dem Abschnitt ‚Nuclear shell modell‘ des englischen Wikipediabeitrags

Zum gleichen Schluss waren zeitgleich die Physiker Otto Haxel, Hans D. Jensen und Hans E. Suess in Hamburg gekommen; Goeppert-Mayers Arbeit wurde zur Prüfung im Februar 1949 eingereicht, die der Hamburger Forscher im erst im April. Als Goeppert-Mayer in Juni 1949 die Ankündigung der Ergebnisse ihrer Kollegen las, versuchte sie noch, ihre Veröffentlichung zu verschieben, damit beide Arbeiten nebeneinander erscheinen könnten, doch dies ließ sich nicht mehr einrichten. So wurde zuerst Goeppert-Mayer als die Entdeckerin des Schalenmodells für den Atomkern bekannt. Es entstand jedoch ein gutes kollegiales Verhältnis zwischen Goeppert-Mayer und Jensen und die beiden brachten 1950 gemeinsam ein Buch zu ihrer Theorie heraus.

In den 1950er Jahren wurde Maria Goeppert-Mayer Mitglied der Heidelberger Akademie der Wissenschaften und der National Academy of Sciences, doch erst 1960 wurde sie endlich vollwertiges Mitglied einer Fakultät, als sie den Lehrstuhl für Physik an der University of California übernahm. Bereits kurz darauf erlitt sie einen Schlaganfall, der sie jedoch nicht von der Arbeit abhalten sollte. 1963 erhielt sie gemeinsam mit Hans D. Jensen eine Hälfte des Nobelpreises für Physik, die andere Hälfte erhielt Eugene Wigner. Goeppert-Mayer war die zweite weibliche Gewinnerin dieses Preises nach Marie Curie, 60 Jahre zuvor. Zu dieser Errungenschaft titelte damals die San Diego Tribune: ‚S.D. Mother Wins Nobel Physics Prize‘ (‚Mutter aus San Diego gewinnt Physik Nobelpreis‘). Hierzu bezog die Nachfolgepublikation The San Diego Union-Tribune im Oktober 2018 Stellung, anlässlich der Verleihung des Nobelpreises für Physik an die dritte Frau überhaupt, Donna Strickland, 55 Jahre nach Goeppert-Mayer.

Zwei Jahre später wurde sie zum Fellow der American Academy of Arts and Sciences. 1971 erlitt sie einen Schlaganfall, in dessen Folge sie ein Jahr lang im Koma lag, bis sie am 20. Februar 1972 verstarb. Die American Physical Society rief 1986 den Maria Goeppert-Mayer Award ins Leben, der jugnen Physikerinnen verliehen wird. Gewinnerinnen müssen einen Doktortitel innehaben, sie erhalten einen Geldbetrag und die Möglichkeit, an vier größeren Institutionen Vorträge über ihre Arbeit zu halten. Auch das Argonne National Laboratory verleiht jedes Jahr im Namen Goeppert-Mayers einen Preis an herausragende Wissenschaftlerinnen, ihre letzte Universität in Kalifornien hält ein jährliches Symposium in ihrem Namen, in dem Wissenschaftlerinnen zusammenkommen. Ein Krater auf der Venus von 35 Kilometer Durchmesser ist nach Maria Goeppert-Mayer benannt.

*

Ebenfalls diese Woche

22. Juni 1939: Ada Yonath
Über diese Chemikerin schrieb ich im Juni 2018.

23. Juni 1871: Jantine Tammes
Die Leidtragende des Matilda-Effektes trug entscheidende Erkenntnisse zur Pflanzengenetik bei, die jedoch ihrem männlichen Kollegen zugeschrieben wurden.

23. Juni 1951: Maria Klawe
Die amerikanische Informatikerin leitet seit 2006 als erste Frau das Harvey Mudd College in Kalifornien.

26. Juni 1862: Ella Church Strobell (Link Englisch)
Gemeinsam mit ihrer Kollegin Katherine Foot trug die Zellbiologin mit Fotografien zum besseren Verständnis der Chromosomen und ihrer Funktion bei.

25/2020: Muazzez İlmiye Çığ, 20. Juni 1914

Die Eltern von Muazzez İlmiye Çığ stammten beide aus Familien von Krimtataren, die in die Türkei ausgewandert waren; die Familie ihres Vaters lebte in Merzifon, die ihrer Mutter in Bursa, wo auch Muazzez İlmiye zur Welt kam. Einige Wochen nach ihrer Geburt begann der Erste Weltkrieg, und als das Osmanische Reich an dessen Ende aufgeteilt wurde und griechische Truppen einmarschierten, flohen Muazzez‘ Eltern mit ihr zunächst nach Izmir, später nach Çorum.

Nachdem sie dort die Grundschule abgeschlossen hatte, bestand sie mit 12 Jahren die Aufnahmeprüfung einer Schule für angehende Lehrerinnen in Bursa; nach fünf Jahren machte sie dort ihren Abschluss. Danach erhielt sie eine Anstellung als Lehrerin in Eskişehir, wo auch ihr Vater arbeitete, später kehrte sie nach Bursa zurück.

Im Rahmen seiner Reformen hatte Mustafa Kemal Atatürk an der Universtiät Ankara eine Fakultät für Sprache, Geschichte und Geografie (der Türkei?) gegründet, an der ausdrücklich auch weibliche Studentinnen erwünscht waren. İlmiye bewarb sich 1938 und wurde für den Studiengang der Altertumswissenschaft angenommen. Ihre Professoren in diesem Fachbereich waren unter anderem Hans Gustav Güterbock und Benno Landsberger, beides deutsche Juden, die vor dem Faschismus in die Türkei geflohen waren. Neben Sumerologie studierte Muazzez İlmiye auch Hethitologie und Deutsch, das Studium schloss sie 1940 ab. Im gleichen Jahr heiratete sie Kemal Çığ, den Direktor des Topkapi Museums in Istanbul, wo Muazzez İlmiye Çığ am Archäologischen Museum eine Aufgabe für die weiteren Jahrzehnte fand. 75.000 sumerische Tontafeln in Keilschrift lagerten in den Beständen des Museums, bis dahin noch nicht übersetzt oder eingeordnet. Gemeinsam mit Samuel Noah Kramer restaurierte und übersetzte sie die Tontafeln und veröffentlichte die Ergebnisse. Im Laufe der Jahre wurde dank ihrer Arbeit das Museum zu einem Lehrzentrum für die Sprachen des Nahen Ostens.

Mit 92 Jahren erlangte die Sumerologin weltweite Öffentlichkeit, nachdem sie in ihrem Buch ‚Fruchtbarkeitskulte und Heilige Prostitution‘ (Bereket Kültü ve Mabet Fahişeliği/Cult of Fertility and Holy Prostitution) die These aufgestellt hatte, dass das Kopftuch im Islam – oft als Zeichen von Keuschheit und Züchtigkeit gewertet – möglicherweise auf den Kopfschmuck sumerischer Tempelhuren zurückginge (deren Existenz inzwischen allerdings grundsätzlich angezweifelt wird). Sie wurde daraufhin der Beleidigung des Islam angeklagt, jedoch freigesprochen, was internationale Beachtung fand.

In diesem Interview vom 13. Mai 2020 erscheint die inzwischen 106-jährige noch sehr kregel, leider ist es nur in türkischer Sprache ohne deutsche Untertitel verfügbar.

TEDxtalks: Gespräch mit Muazzez İlmiye Çığ im Mai 2020

*

Ebenfalls diese Woche

16. Juni 1902: Barbara McClintock
Die amerikanische Zytogenetikerin entdeckte die „springenden Gene“ im Mais und gewann dafür als dritte Frau – nach dreimaliger Nominierung – endlich 1983 den Nobelpreis für Physiologie und Medizin.

20. Juni 1919: Isabella Abbott (Link Englisch)
Als erste Kanaka Maoli mit einem Doktortitel in Naturwissenschaft wurde die Ethnobotanikerin eine Expertin für die Algen im Pazifik.

21. Juni 1927: Ye Shuhua (Link Englisch)
In den 1960er Jahren gelang der chinesischen Astronomin eine der präzisesten Messung der Universal Time.

Elizabeth Fulhame

18. Jhdt.

Elizabeth Fulhame (Link Englisch) war vermutlich Schottin, sicher war sie mit einem Arzt verheiratet und lebte in Edinburgh.

Sie begann ihre Forschungen in der Chemie, weil sie eine Möglichkeit suchte, Stoffe mit Metallen und unter Lichteinfluss zu färben. 1780 hatte sie die Idee, Textilien mittels chemischer Reaktionen mit Gold, Silber oder anderen Metallen zu gestalten, ein Plan, der von ihrem Mann und dem Freundeskreis als „unwahrscheinlich“ abgelehnt wurde. Daraufhin machte sich Fulhame an ihre Untersuchungen und Experimente zu dem, was heute als Redoxreaktionen bekannt ist, die sie 14 Jahre lang beschäftigen sollten.

Sie versuchte, Metalle aus ihren Salzen zu gewinnen, in dem sie diese in unterschiedlichen Lösungszuständen – in wässrigen oder alkoholischen Lösungen oder trocken – verschiedenen Reduktionsmitteln aussetzte. Dabei entdeckte sie, wie durch chemische Reaktionen Metalle aus ihren Salzen herausgefällt werden konnten. Ihre Entdeckung, dass Metalle bei Raumtemperatur allein mit wässrigen Lösungen bearbeitet werden können, statt auf Höchsttemperatur geschmolzen zu werden, zählt zu den wichtigesten ihrer Zeit. Fulhame erreichte theoretische Erkenntnisse zu Katalysatoren, die als entscheidender Schritt in der Geschichte der Chemie gelten – und sie gelangte zu diesen noch vor Jöns Jakob Berzelius und Eduard Buchner.

Es ist interessant, dass Fulhames Entdeckungen über die Gewinnung von Metallen aus ihren Verbindungen in der europäischen Welt ein solches Ereignis war, wo doch Alchemist:innen im östlichen Mittelmeerraum und in China dies schon mehrere Jahrhunderte vorher vermutlich beherrschten (namentlich Fang im 1. Jahrhundert vor Christus, Maria Prophitessa um das 2. Jahrhundert nach Christus, Kleopatra die Alchemistin etwa 300 nach Christus und Keng Hsien-Seng zu Beginn des europäischen Mittelalters). Möglicherweise finde auch nur ich dies verwunderlich, weil ich die tatsächlichen chemischen Prozesse nicht vollständig begreife und/oder mir die Kenntnisse der Wissenschaftsgeschichte fehlen.

Eine weitere Hypothese, die Fulhame aufstellte und experimentell untermauerte, besagte, dass viele Oxidationsreaktionen nur durch Wasser möglich sind, Wasser an der Reaktion beteiltigt ist und als Endprodukt der Reaktion auftritt. Sie schlug als möglicherweise erste Wissenschaftlerin überhaupt Formeln für die Mechanismen dieser Reaktionen vor. Gleichzeitig wich ihre Theorie über die Rolle des Sauerstoff stark von herrschenden wissenschaftlichen Meinung ab.

Im 18. Jahrhundert war ein Großteil der Chemiker von der Phlogiston-Theorie von Georg Ernst Stahl überzeugt, die eine flüchtige Substanz für die chemischen Vorgänge bei Erwärmung und Verbrennung anderer Stoffe verantwortlich machte; Luft habe hingegen keinen Anteil an den Reaktionen. Dem Gegner der Phlogistontheorie, Antoine Lavoisier, konnte sie jedoch auch nicht in allen Hypothesen zur Rolle des Sauerstoff zustimmen.

Den gesamten Experimenten Fulhames lag ja der Wunsch zugrunde, Textilien mit lichtempfindlichen Chemikalien zu färben, und so machte sie auch Versuche mit Silbersalzen. Auch wenn sie nicht versuchte, Bilder mit dieser Methode zu gestalten, kam sie damit doch den Fotogramm-Versuchen Thomas Wedgwoods zuvor. Der Kunsthistoriker Larry J. Schaaf (Link Englisch) hält ihre Erforschung der chemischen Eigenschaften des Silbers daher für wegweisend in der Entwicklung der Fotografie.

1794 brachte Elizabeth Fulhame ihr Buch „Ein Essay über Verbrennung mit einem Blick auf die neue Kunst des Färbens und Malens, in welchem phlogistische und antiphlogistische Hypothesen als fehlerhaft bewiesen werden“ (An Essay On Combustion with a View to a New Art of Dying and Painting, wherein the Phlogistic and Antiphlogistic Hypotheses are Proved Erroneous). Ihre Experimente wurden im Vereinigten Königreich von Wissenschaftlern wahrgenommen und besprochen, Sir Benjamin Thompson und Sir John Herschel (Neffe von Caroline Herschel) äußerten sich lobend über Fulhames Arbeit.

Das Buch wurde vier Jahre später von Augustin Gottfried Ludwig Lentin (Link Englisch) ins Deutsche übersetzt, 1810 folgte eine Veröffentlichung in den Vereinigten Staaten. Noch im gleichen Jahr wurde sie zum Ehrenmitglied der Philadelphia Chemical Society ernannt; sie wurde von ihrem Zeitgenossen Thomas P. Smith gelobt: „Mrs. Fulhame erhebt nun so kühne Ansprüche auf die Chemie, dass wir ihrem Geschlecht nicht mehr das Privileg verweigern können, an dieser Wissenschaft teilzuhaben.“

Trotz des Erfolges hielt der amerikanische Herausgeber des Buches im Vorwort fest, dass Fulhames Arbeit längst nicht so bekannt sei, wie sie sein könnte oder sollte: „Der Stolz der Wissenschaft lehnte sich gegen den Gedanken auf, von einer Frau (‚a female‚) belehrt zu werden.“ Und auch Fulhame selbst gestand in der Einleitung ihres Textes, dass sie mit ihren Erkenntnissen auf Ablehnung gestoßen sei, aufgrund ihres Geschlechtes.

Doch Mißbilligung ist wohl unausweichlich: denn einige sind so dumm, dass sie mißmutig und still werden, und vom kalten Schauer des Schreckens erfasst werden, wenn sie etwas ansichtig werden, das sich auch nur einer Anmutung des Lernens nähert, in welcher Form dies auch auftrete; und sollte das Gespenst in der Form einer Frau erscheinen, die Stiche, unter denen sie leiden, sind wahrlich jämmerlich.“

übersetzt von Wikipedia

Fulhame war sich ihrer Rolle als Frau in der Wissenschaft durchaus auch bewusst; zwar hatte sie das Essay ursprünglich dafür niedergeschrieben, um mit ihren Entdeckungen und Erfindungen (zum metallischen Färben von Textilien) nicht plagiarisiert werden könnte. Doch ihr Werk sollte auch als ‚Leuchtturm für zukünftige Matrosen‘ dienen, womit weitere Frauen in der Wissenschaft gemeint waren.

Lavoisier konnte auf Fulhames Kritik an seinen Sauerstoff-Theorien nicht mehr reagieren: Sechs Monate vor der Veröffentlichung war er in der Französischen Revolution unter der Guillotine gestorben (begonnen hatte sein Abstieg wohl damit, dass er eine Abhandlung Marats über Verbrennungen kritisiert hatte). William Higgins, irischer Chemiker und ein weiterer Gegner der Phlogistontheorie, drückte sein Bedauern aus, dass sie seine Arbeiten nicht berücksichtigt hätte, in denen er die Rolle des Wassers bei der Entstehung von Rost beschrieben hatte. Doch hätte er ihr Buch mit großem Vergügen gelesen und wünsche innigst, dass ihrem löblichen Beispiel vom Rest ihres Geschlechtes gefolgt würde.