Schlagwort: hertha ayrton

Matilda und die verschwundenen Frauen

Dieser Text ist als Beitrag zur Blogparade der Münchner Stadtbibliothek entstanden, in der es um Frauen und Erinnerungskultur geht. Während die Frage eigentlich in die Richtung der Literatur- und Kunst-Blogger:innen ging, trieb mich in diesem Jahr eben besonders dieser Begriff um, der wie die Hand in die Stulpe passt. Nur wenige Tage zuvor hat auch Melanie Jahreis über die scheinbar fehlenden Forscherinnen und Erfinderinnen geschrieben!

Wenn im Weiteren von Frauen und Wissenschaftlerinnen gesprochen wird, möchte ich voranstellen, dass Gage und Rossiter ihren Blick auf Frauen allgemein richten, wir aber natürlich alle wissen, dass der Effekt zwar für weiße Frauen ein Problem ist, Womxn of Colour aber in der Intersektion von Sexismus und Rassismus wesentlich härter getroffen werden. Sie tauchten sozusagen noch gar nicht am Platz auf, als weiße Frauen immerhin schon auf der Ersatzbank sitzen durften.

„Keine Aussage über die Frau ist gebräuchlicher, als dass sie keinen erfinderischen oder mechanischen Schöpfergeist habe“, schreibt Matilda Joslyn Gage 1870 in ihrem Essay Woman as Inventor. Die amerikanische Suffragette, die sich auch für die Abschaffung der Sklaverei und die Rechte amerikanischer Ureinwohner einsetzte, schlägt in ihrem Text den Bogen von den schöpferischen Gottheiten Ägyptens – Isis – und Griechenlands – Pallas Athene und Ceres – zu Leizu, die in China als die Erfinderin der Serikultur verehrt wird, und weiter zu zahlreichen Patenten der Neuzeit, die auf Ideen von Frauen zurückgehen. Sie nennt klarsichtig die Gründe, warum Namen von Frauen seltener auf Patenten erscheinen und warum Erfinderinnen der Allgemeinheit meist weniger bekannt sind: „Während, wie aufgezeigt wurde, viele der wichtigsten Erfindungen der Welt der Frau zu verdanken sind, ist der Anteil der weiblichen Erfinderinnen viel kleiner als der männlichen, welches aus der Tatsache entsteht, dass die Frau nicht die gleiche Fülle an Freiheit besitzt wie der Mann. Eingeschränkt in Bildung, gewerblichen Chancen und politischer Macht, ist dies eines der vielen Beispiele, bei denen sich ihre Herabwürdigung schädlich auf die ganze menschliche Rasse auswirkt. […] Der politischen Macht entzogen, wie die Frau ist, sieht sie sich der Verachtung für ihr Geschlecht, offener und verborgener Verachtung der Weiblichkeit, herablassender Anspielungen über ihre intellektuellen Fähigkeiten gegenüber – alles dient dazu, den Ausdruck ihres erfinderischen Schöpfergeistes zu verhindern.“ So sind die Patente für Erfindungen von Frauen oftmals im Namen ihres Ehemannes als ‚Eigentümer‘ oder Vormunde der Frauen eingetragen – denn als Eigentümer der Frauen sind sie auch Eigentümer derer geistigen Produkte.

frauenfiguren matilda wie frauen in der wissenschaft verschwinden egreniermaschine
Egreniermaschine, gebaut von Eli Whitney, vermutlich nach einer Idee von Catharine Greene Miller
By Tom Murphy VII – Taken by uploader, user:brighterorange., Public Domain

Neben der männlichen Ablehnung einer grundsätzlichen weiblichen Befähigung nennt sie auch die strukturelle Gewalt der partriarchalischen Gesellschaft, die unter anderem durch soziale Ächtung geschäftstüchtiger Frauen ausgeübt wurde; dies insbesondere anhand der Erfinderin der Egreniermaschine, die der Ingenieur Eli Whitney nur nach der Idee von Catharine Greene Miller (Link Englisch) habe bauen können. Greene Miller habe ihren Namen nicht auf das Patent gesetzt, da derlei Unternehmergeist an einer Dame ungebührlich gewesen wäre. (Diese Anekdote ist allerdings umstritten.)

*

Mehr als 100 Jahre später machte die Wissenschaftshistorikerin Margaret W. Rossiter (Link Englisch) eine ähnliche, immer noch aktuelle Beobachtung. Rossiter hatte während ihres Studiums in Yale bei einem formlosen Treffen von Lehrenden und Studierenden gefragt, ob es jemals weibliche Wissenschaftlerinnen gegeben habe. Die Antwort: „Nein, gab es nicht, jede Frau, die als solche in Frage käme, arbeitete nur einem männlichen Wissenschaftler zu.“ Dies Mitte der 1970er Jahre, wohlgemerkt. Mit dieser Antwort verständlicherweise mehr als unzufrieden, konzentrierte sich Rossiter auf die Rolle der Frauen in der amerikanischen Wissenschaftsgeschichte – und fand in ihrer Arbeit als Postdoktorandin die Biografien hunderter Wissenschaftlerinnen unter anderem im Nachschlagewerk American Men of Science (sic!, inzwischen heißt das Werk American Men and Women of Science, nächster Schritt hoffentlich: American Persons of Science). Sie schrieb darüber in einem Artikel, der von den Magazinen Science und Scientific American abgelehnt wurde, aber schließlich von American Scientist veröffentlicht wurde.

Obwohl ihr nur lauwarmes Interesse aus Wissenschaftler- wie Historiker-Kreisen entgegenschlug und sogar einige Wissenschaftlerinnen meinten, es gäbe in dieser Hinsicht nichts zu entdecken, betrieb Rossiter ihre Forschung weiter. Die Suche nach „verschwundenen“ weiblichen Wissenschaftlerinnen erbrachte immer weitere Funde, sodass Rossiter schließlich nicht nur ein Buch, sondern ganze drei Bände zum Thema Frauen in der Wissenschaft schreiben sollte. 1981 erhielt sie ein Guggenheim-Stipendium, das ihre Arbeit zum Teil finanzierte. Die drei Bände ihrer Arbeit heißen Women Scientists in America, Struggles and Strategies to 1940 (1982), Women Scientists in America: Before Affirmative Action, 1940-1972 (1995) und Women Scientists in American Volume 3: Forging a New World Since 1972 – letzteres wurde 2012 veröffentlicht.

Rossiters eigene akademische Karriere selbst blieb auch nicht unberührt von misogynen Hindernissen, sodass sie sich zeitweise so fühlte wie die Frauen, über die sie schrieb: „Ich nehme an, ich bin eine 78rpm-Schallplatte in einer 33rpm-Welt.“ (Quelle: Wiki) Sie hatte Schwierigkeiten, eine feste Stelle an einer Universität zu erlangen, weil sie als Wissenschaftshistorikerin angeblich keinem Fachbereich richtig angehöre. Eine ursprünglich einjährige Anstellung an der Cornell University wurde zwar auf drei Jahre ausgedehnt, jedoch nur unter finanziellen Einschränkungen. Erst als eine andere Universität ihr eine volle Professur anbot, riss sich ihr Arbeitgeber zusammen und schuf einen Fachbereich für Wissenschaftsgeschichte, in dem sie fest angestellt wurde. Danach konnte sie auch den zweiten Band ihrer Buchreihe herausbringen.

1993 veröffentlichte Rossiter den Artikel, in dem sie den Begriff Matilda-Effekt (hier lohnt sich, wie des Öfteren, auch der Blick auf den englischen Beitrag) prägte: The Matthew Matilda Effect in Science. Sie greift darin auf einen anderen Effekt zurück, der 1968 vom amerikanischen Soziologen Robert K. Merton als Matthäus-Effekt beschrieben wurde. Bezugnehmend auf die Bibelstelle Matthäus 13:12 – „Denn wer da hat, dem wird gegeben, dass er eine Fülle habe; wer aber nicht hat, dem wird auch das genommen, was er hat.“ – bezeichnet er die Tatsache, dass sich bei Personen, die bereits einen Erfolg zu verzeichnen haben, weitere Erfolge anschließen. In der wissenschaftlichen Welt bedeutet dies, dass, wenn ein Wissenschaftler durch ein aufsehenerregendes Forschungsergebnis Aufmerksamkeit und Sichtbarkeit erlangt, er mehr zitiert wird und sich dadurch mehr Chancen für weitere prestigeträchtige Arbeiten auftun. Gleichzeitig verschwinden andere Wissenschaftler mit ihren Ergebnissen hinter dem Glanz dieses „Genies“, ja zum Teil werden deren Erfolge fälschlicherweise auch einem bereits bekannten, erfolgreichen Wissenschaftler zugeordnet. Ironischerweise wird die Beschreibung und Untersuchung dieses Effekts zwar Robert K. Merton zugeschrieben, er stützte seine Arbeit jedoch in hohem Maß auf die Dissertation seiner zweiten Frau, Harriet Zuckerman.

Rossiter führt vor dem Hintergrund ihrer beträchtlichen Recherche für die `Women Scientists in America´-Trilogie einige Beispiele an und erläutert die unterschiedlichen Wege, wie diese Verdrängung in besonderem Maße Frauen in der Wissenschaft betrifft. So verweist sie auf die Nepotismus-Regelung an amerikanischen Universitäten (der auch ich mit ungläubigem Staunen begegnet bin), die es untersagte, dass bei einem Ehepaar beide fest bzw. mit voller Professur an einer Universität arbeiten durften; damit sollte ‚Vetternwirtschaft‘ verhindert werden, was es jedoch tatsächlich vereitelte, war die angemessene Anstellung und Bezahlung wissenschaftlich arbeitender Ehefrauen. Wissenschaftlerinnen waren auch in Gefahr, ‚für ihre Forschung‘ geheiratet zu werden, da ihre Arbeitsergebnisse dann häufig als gemeinschaftlicher Erfolg unter dem Namen des Mannes veröffentlicht werden konnten.

Unter den Beispielen für den Matilda-Effekt, die Rossiter anführt, sind mehrere, die ich auch hier auf frauenfiguren besprochen habe:

Maria Goeppert-Mayer sei ja wie Marie Curie noch recht gut weggekommen, da sie ebenbürtig mit ihren männlichen Kollegen den Nobelpreis für Physik gewonnen habe (vorher war sie jedoch von der fragwürdigen Nepotismus-Regel betroffen gewesen und hatte einen Großteil ihrer Arbeit schlecht oder unbezahlt geleistet). Andere Beispiele sind
• die Pathologin Frieda Robscheit-Robbins (Link Englisch), der 1934 Anteile des Nobelpreises für Physiologie oder Medizin zugestanden hätten
Candace Pert (Link Englisch), die an der Entdeckung der Opioidrezeptoren beteiligt war
Ruth Hubbard, deren sämtliche Forschungsarbeiten zur Biochemie des Sehens nach ihrer Eheschließung mit George Wald unter seinem Namen erfasst wurden
Isabella Karle, die noch 1985 feststellen musste, dass ihre fünfzigjährige Zusammenarbeit mit ihrem Mann an Kristallstrukturanalysen sie weniger für den Nobelpreis für Chemie qualifizierten als einen männlichen Kollegen

Nach diesen zahlreichen namentlichen, jedoch keinesfalls alleinstehenden Beispielen dafür, wie die wissenschaftliche Arbeit von Frauen von Männern angeeignet oder ihnen zugeschrieben wurde, schließt Rossiter den Artikel mit der Darlegung, warum sie sich für Matilda Joslyn Gage als Namenspatin für den Effekt entschieden hat, statt für eine der zwei biblischen Alternativen, Priszilla und Martha (die als Äquivalent zum Evangelist Matthäus nahe lägen). Sie fühlt sich der amerikanischen Menschenrechtsaktivistin am meisten verbunden, aufgrund der eingangs beschriebenen Beobachtung, und wünscht, dass diese ebenfalls in den Schatten der patriarchalen Geschichtsschreibung getauchte Aktivistin durch eine Anerkennung des Matilda-Effektes mehr Aufmerksamkeit erfahren soll.

*

In diesem Jahr der Wissenschaftlerinnen auf frauenfiguren ist mir der Matilda-Effekt in verschiedenen Formen und Abstufungen beinahe jede Woche mindestens einmal begegnet, und jedesmal hat es die Flamme feministischer Wut neu in mir angefacht. Zwei Dinge werden immer wieder deutlich. Erstens: In der männlich dominierten Welt – der Wissenschaft und allgemein – stehen Frauen unter dem Druck, sich als `die Beste´zu positionieren, um überhaupt gesehen zu werden und Raum zu erhalten; dabei müssen sie Heerscharen von guten, mittelmäßigen und auch vernachlässigbaren Männern im gleichen Arbeitsbereich überstrahlen. Frauen können sich nicht erlauben, mittelmäßig zu sein. Und zweitens: Sie sind von Anfang bis Ende (und auch heute noch) von der Unterstützung und dem Wohlwollen der Männer in ihrem Leben abhängig. Die Väter mussten die Ausbildung unterstützen und fördern, die Lehrer und Schulvorstände mussten sie als Schülerinnen und Studentinnen zulassen, die Kollegen mussten sie als gleichwertig betrachten und ihre Arbeit als solche wertschätzen, die Ehemänner mussten ihnen erlauben, weiter zu arbeiten und ihre Erkenntnisse unter dem eigenen Namen zu veröffentlichen. Andere Frauen wiesen vielleicht den Weg, aber die Männer mussten ihn ebnen – und sie vorangehen lassen.

Gegen die patriarchale Dominanz der Männer in der Wissenschaft und der Gesellschaft insgesamt müssen Wissenschaftlerinnen und Frauen allgemein immer noch ankämpfen. Rossiters Erkenntnis und Benennung des Matilda-Effektes sollte dazu beitragen, die misogyne Mechanik zu erkennen und ihr entgegenwirken zu können. Dennoch ist er an vielen Stellen noch immer nicht behoben, denn das System schreibt sich fort, der Effekt selbst wird in Zweifel gezogen und die Bücher, aus denen wir über die Geschichte und die Wissenschaft lernen, sind noch nicht alle umgeschrieben. Als ich dieses Blog ins Leben rief, ging es mir genau darum: Die Vielzahl an unterschiedlichen Frauen aufzuzeigen, die es immer gab und immer geben wird, die in allen Bereichen des Lebens ebenso nennenswert sind wie Männer. Der Matilda-Effekt ist für mich inzwischen ein gängiger Begriff und ich schaue immer öfter einmal mehr danach, ob und wie weit Frauen an wissenschaftlichen und gesellschaftlichen Errungenschaften beteiligt oder sogar federführend waren. Damit Matilda nicht mehr vergessen wird.

*

Übrigens ist es selbstverständlich ganz eigennützig, wenn ich auch hier noch einmal darauf hinweisen möchte, wie wichtig und von mir sehr geschätzt die Arbeit der Wikipedianer:innen ist, die sich besonders um das Vorhandensein und die Ausführlichkeit von Wiki-Beiträgen zu Frauen bemühen; oft gegen starke misogyne Gegenwehr. Hätte ich nicht dieses Blog und zugegebenermaßen mehr mentale Ressourcen und die innere Stärke, wäre das das nächstbeste zu frauenfiguren, womit ich meine Zeit verbringen könnte. So aber möchte ich nur `Danke´sagen und noch mehr Expert:innen und Koryphäen bitten, auf Wikipedia gegen den Matilda-Effekt tätig zu werden.

18/2020: Marietta Blau, 29. April 1894

Die in Wien geborene Marietta Blau machte 1914 ihre Matura und studierte anschließend Physik und Mathematik an der Universität Wien. 1919 promovierte sie mit einer Dissertation „Über die Absorption divergenter γ-Strahlung“. Da sie in Wien keine Beschäftigung fand, ging sie zunächst nach Deutschland. Sie arbeitete bis 1921 in einer Röntgenröhren-Fabrik in Berlin, anschließend unterrichtete sie angehende Ärzte in Röntgenphysik am Institut für physikalische Grundlagen der Medizin an der Universität Frankfurt. Als 1923 ihre Mutter in Wien erkrankte, kehrte Blau nach Wien zurück. Bei ihrer Familie versorgt, forschte sie unbezahlt als wissenschaftliche Mitarbeiterin am Institut für Radiumforschung der Österreichischen Akademie der Wissenschaften. In den Jahren 1932 und 1933 konnte sie dank eines Stipendiums des Verbandes der Akademikerinnen Österreichs Forschungsaufenthalte in Göttingen und Paris absolvieren.

In ihrer Zeit in Wien arbeitete Marietta Blau mit Hertha Wambacher an einer Methode, atomare Teilchen photographisch sichtbar zu machen. Für Photographien wurden zu dieser Zeit Platten aus Glas oder Metall mit einer Emulsion aus Gelatine und lichtempfindlichen Silberverbindungen bestrichen, Blau und Wambacher entwickelten für ihre Forschungen eine spezielle Kernemulsion, mit der insbesondere Alphateilchen und Protonen durch Bestrahlung der Platten nachgewiesen werden konnten sowie anhand der Bahnspuren in der Emulsion erkennbar wurde, wohin ihre Energie gerichtet war. Für diese Arbeit erhielten die beiden Physikerinnen 1936 den Haitinger-Preis und 1937 den Lieben-Preis der Akademie.

Die Aufsehen erregendste Entdeckung der beiden waren die sternförmig verlaufenden Teilchenbahnspuren auf Photoplatten, die sie auf 2.300 Meter über Normalnull installiert hatten. Diese so genannten Zerstrümmerungssterne wiesen auf Kernreaktionen in der Photoemulsion hin, die mit Teilen der kosmischen Strahlung stattgefunden haben mussten.

Während ihre Kollegin Wambacher bereits seit 1934 Mitglied der NSDAP war, bedeutete der Anschluss Österreichs 1939 für die Jüdin Blau ein Ende ihrer Karriere im Land. Sie sah sich gezwungen, das Land zu verlassen, zunächst in Richtung Schweden, wo sie in Oslo mit Ellen Gleditsch am Chemischen Institut arbeitete. Zu Beginn des Zweiten Weltkriegs 1939 verhalf ihr jedoch die Vermittlung Albert Einsteins zu einer Anstellung an der Technischen Hochschule in Mexiko-Stadt. Da die Bedingungen dort jedoch auch nicht optimal waren, wechselte sie schließlich 1944 in die USA, wo sie zunächst vier Jahre lang in der Industrie tätig war, anschließend in diversen wissenschaftlichen Einrichtungen. Währenddessen setzten andere, die nicht politisch verfolgt wurden, ihre Forschungen in Wien fort und veröffentlichten darauf aufbauende Publikationen, in denen Marietta Blau mit keinem Wort erwähnt wurde. Ebensowenig wies Cecil Powell auf Wambacher und Blau hin, als er 1950 den Nobelpreis für Physik erhielt, obwohl seine Forschungen von den Entdeckungen der beiden Physikerinnen angestoßen worden waren – ein weiteres Beispiel für den Matilda-Effekt. Tatsächlich hatte Erwin Schrödinger eigentlich die beiden Frauen für den Preis vorgeschlagen.

1960 kehrte Marietta Blau nach Österreich zurück und arbeitete bis 1964 am Institut für Radiumforschung, sie leitete hier – wiederum unbezahlt – Arbeitsgruppe zur Analyse von photographischen Aufnahmen von Teilchenbahnspuren des CERN und betreute auch eine Dissertation dazu. Zwei Jahre vor ihrer Pesnionierung erhielt sie noch den Erwin-Schrödinger-Preis der Österreichischen Akademie der Wissenschaften, doch für eine Aufnahme in die Akademie reichte es nicht.

1970 trug die jahrelange ungeschützte Arbeit mit radioaktivem Material sowie ihr Zigarettenkonsum Rechnung, sie starb völlig verarmt und so gut wie unbemerkt in ihrer Geburtsstadt an Krebs. Erst 2004 widmete ihre ehemalige Schule ihr eine Gedenktafel, im Folgejahr wurde ein Saal im Hauptgebäude der Universität Wien nach ihr benannt.

*

Ebenfalls diese Woche

28. April 1854: Hertha Ayrton
Über diese Mathematikerin und Elektroingenieurin schrieb ich 2017, als ich mich mit Frauen im 19. Jahrhundert befasste.

14/2020: Sophie Germain, 1. April 1776

Sophie Germain wurde in Paris geboren, ihr Vater war wahrscheinlich Textilkaufmann, in jedem Fall wohlhabend. Als die Französische Revolution ausbrach, war Sophie 13 – und durch die gewaltvollen Vorgänge in den Straßen dazu gezwungen, in ihren eigenen vier Wänden zu bleiben. Ihr Vater wurde einer der Vertreter der Bourgeoisie in der Nationalversammlung. In der Zeit der politischen Unsicherheit wandte sich Sophie der Sicherheit in der Bibliothek ihres Vaters zu. Eines der Bücher mit dem größten Einfluss auf ihre spätere Karriere war Histoires des mathématiques (Geschichte der Mathematik) von Jean-Étienne Montucla, die Geschichte von Archimedes und seinem Tod beeindruckte sie besonders.

Ihre Faszination für die Mathematik wurde von ihren Eltern zunächst nicht begrüßt, da sich dies zur damaligen Zeit für eine junge Dame nicht schicke. Sie versuchten, sie von weiterer Beschäftigung damit abzuhalten, indem sie ihr Zimmer nachts nicht mehr heizten und beleuchteten – doch Sophie setzte sich mit mehreren Decken und Kerzen an ihren Schreibtisch. Morgens fanden die Eltern sie schlafend am Schreibtisch, der mit mathematischen Formeln bedeckt war, die Tinte gefroren im Glas. Dieser Entschlossenheit wollten sie sich nicht mehr entgegenstellen und gestatteten ihr das Studium der Mathematik, ihre Mutter unterstützte sie schließlich aktiv in ihrer Bildung. Sophie Germain brachte sich zusätzlich auch Latein und Griechisch bei, um die Werke von Isaac Newton und Johann Albrecht Euler lesen zu können.

1794, noch vor Ende der Revolution, wurde die École polytechnique gegründet – doch der inzwischen 18-jährigen Germain war es wegen ihres Geschlechts nicht erlaubt, die Schule zu besuchen. Ein befreundeter Student der Schule, Antoine-Auguste LeBlanc, beschaffte ihr die Vorlesungsunterlagen. Als LeBlanc in den Auseinandersetzungen der Revolution starb, setzte sie ihr Studium ohne seine Unterstützung fort. Sie verwendete den Namen LeBlanc, um Lösungen für die mathematischen Probleme einzureichen, die der Professor Joseph-Louis Lagrange seinen Studenten stellte. Von der Intelligenz seines ‚Schülers‘ LeBlanc angetan, wollte er ‚ihn‘ treffen und war zwar überrascht, aber nichtsdestotrotz begeistert von Sophie Germain. Er wurde einer ihrer ausdauerndsten Unterstützer und Förderer.

Aufgrund der Veröffentlichung eines Essays zur Zahlentheorie von Adrien-Marie Legendre begann sich auch Germain für diesen Bereich der Mathematik zu interessieren. Sie nahm Kontakt mit ihm auf, um sich auszutauschen. Einige Zeit später veröffentlichte Carl Friedrich Gauß die Disquisitiones Arithmeticae (Zahlentheoretische Untersuchungen); nachdem sie sich drei Jahre mit den Aufgaben und Fragen beschäftigt hatte, sie sein Werk aufstellte, begann sie unter dem Pseudonym LeBlanc auch mit ihm eine Korrespondenz. Als 1806 Braunschweig von Napoleon besetzt wurde, war Germain um den dort lebenden Gauß besorgt und nutzte ihre gesellschaftliche Stellung, um seine Sicherheit zu gewährleisten. Der französische Kommandant Penetry war ein Freund der Familie, ihn bat sie, Gauß vor einem archimedischen Schicksal zu schützen. Als er dies gegenüber dem Schützling Gauß erwähnte, konnte dieser mit dem Namen Sophie Germain nichts anfangen, da er sie als Antoine-Auguste LeBlanc kannte. Erst drei Monate später offenbarte Germain Gauß ihre Identität, dessen Anerkennung daraufhin wuchs, denn schließlich hätten Frauen weit größere Hürden zu überwinden bei der Verfolgung ihrer wissenschaftlichen Ziele. Doch obwohl er ihre Arbeit schätzte, war die Korrespondenz meist einseitig, Gauß erwähnte keine von Germains Schriften in seinen Arbeiten und auch der Briefwechsel endete kurze Zeit nach Germains Offenbarung.

Stattdessen wandte sich Germain zunächst dem Thema der Elastizität zu, anlässlich einer Preisausschreibung der Académie des sciences, angeregt von Ernst Florens Friedrich Chladnis Experimenten mit schwingenden elastischen Platten. Die Herausforderung war, zu diesen Schwingungen eine mathematische Theorie zu entwickeln. 1809 begann Sophie Germain an diesem Problem zu arbeiten, zunächst mit nur einem Konkurrenten um den Preis, Siméon Denis Poisson, der jedoch noch vor dem Ablauf des Wettbewerbs in die Académe aufgenommen wurde und somit vom Mitstreiter zum Preisrichter aufstieg. Germains Einreichung 1811 war die einzige, doch die Jury empfand ihre Gleichungen als nicht hinreichend begründet und verlieh den Preis nicht; Joseph-Louis Lagrange war allerdings auf der Basis von Germains Berechnungen in der Lage, eine Gleichung zu erstellen, die ‚unter bestimmten Voraussetzungen‘ gültig war.

Der Wettbewerb wurde um zwei Jahre verlängert und Germain machte sich gleich an eine Überarbeitung ihrer Schrift. Während sie in der ersten Runde noch die Unterstützung von Adrien-Marie Legendre gehabt hatte, war sie nun auf sich allein gestellt, und ihre zweite Einreichung 1813 war voller Berechnungsfehler. Sie erhielt eine ehrenhafte Erwähnung, doch der Wettbewerb wurde ein weiteres Mal um zwei Jahre verlängert.

Dieses dritte Mal ließ sie sich zunächst von Poisson beraten, doch dieser veröffentlichte 1814 eine eigene Arbeit zum Thema, in der er mit keinem Wort erwähnte, dass seine Berechnungen in Zusammenarbeit mit Germain zustande gekommen waren und er als Mitglied der Académie Zugang zu ihren Vorarbeiten gehabt hatte. Sophie Germain sollte ihren dritten Versuch 1815 schließlich auch unter ihrem eigenen Namen einreichen und endlich 1816 als erste Frau in der Geschichte einen Preis der Académie des sciences gewinnen. Aus Protest gegen die Behinderung und Herabsetzung, die sie von einigen der Preisrichter hatte hinnehmen müssen, blieb Germain der Preisverleihung fern. Und einen Zugang zu den Versammlungen der Académie verschaffte ihr der gewonnene Preis auch nicht – den hatten nur die ausschließlich männlichen Mitglieder und deren Ehefrauen. Erst sieben Jahre später konnte die preisgekrönte Mathematikerin an den Sitzungen teilnehmen, weil Joseph Fourier, mit dem sie sich angefreundet hatte, ihr Eintrittskarten organisierte.

Ihre gekürte Arbeit zur Elastizität veröffentlichte sie 1821 auf eigene Kosten, um ihre Beteiligung an Poissons Schrift von 1814 zu verdeutlichen, eine überarbeitete Fassung erschien fünf Jahre später.

Nachdem der Preis zum Thema Elastizität verliehen war, schrieb die Académie einen Preis aus für den Beweis des Satzes von Fermat. Damit wandte sich auch Germain diesem Bereich der Zahlentheorie zu und sie nahm nach zehn Jahren des Schweigens die Korrespondenz zu Gauß wieder auf. In ihrem Brief an ihn beschrieb sie eine Strategie für den Beweis des Satzes, der zeigt, dass sie einer Lösung für das Problem auf der Spur war; doch Gauß antwortete nie auf ihren Brief. Germain schrieb stattdessen ein Manuskript, das jedoch nie veröffentlicht wurde; darin bewies sie, dass der 1. Fall des Fermat’schen Satzes für bestimmte Primzahlen zutraf. Ihre Beweisführung wurde nur dadurch überhaupt bekannt, dass Legendre diesen Beweis in einer Fußnote seiner eigenen Arbeit erwähnte. Diese Primzahlen, mit denen Germain ihren Beweis erbrachte, heißen heute Sophie-Germain-Primzahlen.

Sophie Germain arbeitete noch einige Jahre an diesem und anderen mathematischen Themen, ebenso beschäftigte sie sich mit Philosophie und Psychologie. Ihr Anliegen war es, mathematische Methoden auch auf diese Bereiche anwendbar zu machen. 1829 erhielt sie eine Brustkrebsdiagnose und 1831 starb sie mit 55 Jahren an der Krankheit. Trotz seiner Zurückhaltung im Briefwechsel mit ihr klagte Gauß sechs Jahre nach ihrem Tod, dass sie eine Ehrendoktorwürde der Universität Göttingen verdient hätte: „Sie bewies der Welt, dass sogar eine Frau etwas erwähnenswertes erreichen kann in der exaktesten und abstraktesten Form der Wissenschaft.“ (Quelle: Wiki)

*

Ebenfalls diese Woche

2. April 1647: Maria Sybilla Merian
Über die „Mutter der Entomologie“ schrieb ich 2016.

3. April 1943: Jane Goodall
Mit dem Jane-Goodall-Institut setzt sich die britische Verhaltensforscherin für den Schutz von Primaten und der Erhalt ihrer Habitate ein.

4. April 1868: Philippa Fawcett
Die britische Mathematikerin war 1890 die erste Frau, die beim Mathematical Tripos von Cambridge die höchste Punktzahl erreichte; siehe auch Hertha Ayrton.

17/2017: Hertha Ayrton, 28.4.1854

Hertha Ayrton

English below
Wiki deutsch
Die Tochter einfacher polnisch-jüdischer Immigranten wurde nach dem Tod ihres Vaters zu ihrer Tante in Obhut gegeben, die eine Schule in London betrieb. Dort erhielt sie ihre frühe schulische Ausbildung. Mit 16 Jahren arbeitete sie zunächst als Gouvernante, mit 20 begann sie ihr Studium der Mathematik am Girton College, nach ihrem Abschluss sechs Jahre später arbeitete sie dort auch als Lehrerin. Sie entwickelte in dieser Zeit ein Sphygmomanometer (oder auch Blutdruckgerät). Neben vielerlei sozialem Engagement bestand sie auch mit 26 Jahren eine mathematische Prüfung für Studenten der University of Cambridge, aber die vergab zu dieser Zeit keinen akademischen Grad an Frauen, nur Zertifikate. Ein Jahr später erhielt sie jedoch von der Universität London einen Bachelor of Science für eine ähnliche Prüfung.

In London entwickelte sie auch ein Instrument, mit dem man Linien in gleichlange Teile zerlegen kann, das Künstler, Architekten und Ingenieure verwenden können. Die Eintragung des Patentes wurde von den Feministinnen Louise Goldsmid und Barbara Bodichon finanziell unterstützt. Es war das erste von 26 Patenten, die Ayrton im Lauf ihres Lebens eintragen ließ.

Mit ihrem Ehemann, der zuvor ihr Lehrer gewesen war, betrieb sie Studien in der Elektrotechnik, Mathematik und Physik. Sie schrieb mehrere Publikationen unter anderem über die Bogenlampen-Technik und deren Verbesserung. 1899 wurde sie schließlich als erste Frau Mitglied der Institution of Electrical Engineers (IEE), durfte aber dennoch – aufgrund ihres Geschlechts – ihre Schrift nicht selbst bei der Royal Society vortragen, ein männlicher Kollege musste dies für sie tun.

Nach ihrem Vortrag beim International Electrical Congress in Paris 1900 festigte sich ihr Ruf als Kompetenz in der Elektrotechnik. Ihr Beispiel veranlasste die British Science Association dazu, Frauen in Kommittees unterschiedlicher Fachbereiche zuzulassen. Erst 1905 durfte sie als Frau bei der Royal Society vortragen, Mitglied in dieser Vereinigung wurde sie jedoch nie. 1906 erhielt sie die Hughes-Medaille für ihre Arbeit zu Bogenlampen, damit war sie die fünfte Person, die diese Ehrung erhielt; erst 2008 erhielt wieder eine Frau, Michele Dougherty, diesen Preis.
Während des Ersten Weltkrieges entwickete Ayrton ein lebensrettendes Instrument zur Giftgasbeseitigung, den Ayrton Fan.

Die Agnostikerin setzte sich auch für die Frauenrechte ein und benannte ihr erstes Kind nach der Feministin Barbara Bodichon – diese wurde Member of Parliament für die Labour Party und Mutter des Künstlers Michael Ayrton, der den Namen der mütterlichen Linie für seine professionelle Identität wählte. Hertha Ayrton starb mit 69 Jahren an einer Blutvergiftung.

*

Wiki english
The daughter of plain Polish and Jewish immigrants, after her father’s death, was committed into the care of her aunt who ran a school in London. She received her early education there. At the age of 16 she worked as a governess, at 20 she began her studies of mathematics at Girton College, after finishing her studies she also worked as a teacher there. During that time she developed a sphygmomanometer. Besides a lot of social engagement she also passed the Mathematical Tripos at the University of Cambridge at 26 years old, but they did not hand certificates only to women, not degrees. She did receive a Bachelor’s degree from the University of London for passing a similar exam.

In London she also invented an instrument to divide lines in equally long parts, which can be used by artists, architects and engineers. The patenting of this invention was supported financially by the feminists Louise Goldsmid and Barbara Bodichon.  It was the first of 26 patents Ayrton would register in her lifetime.

With her husband, who had been her teacher before, she worked on studies in electrical engineering, mathematics and physics. She penned several publications, among others about arc lighting and its improvement. In 1899 she became the first female member of the Institution of Electrical Engineers (IEE), but – because of her gender – was not allowed to read her work at the Royal Society, a male colleague had to read it for her.
After her lecture at the International Electrical Congress in Paris 1900 her reputation as a competence in electrical enginieering was consolidated. Her example prompted the British Science Association to allow women on committees of various topics. It was in 1905 only that she could speak before the Royal Society, but she was never registered as a member. In 1906 she received the Hughes Medal for her work on arc lighting, as the fifth person awarded this honour; only in 2008 this prize was won by a woman, Michele Dougherty, again.

During World War I Ayrton developed an life-saving instrument for the dispelling of poisoned gas, the Ayrton fan.
The agnostic also advocated for women’s rights and named her first child after Barbara Bodichon – she became a Member of Parliament for the Labour Party and mother to artist Michael Ayrton, who took the name of his mother’s family for his professional identity. Hertha Ayrton died of blood poisoning at 69 years of age.

Bild: Von Helena Darmesteter – BBC Your Paintings (now available by Art UK), Gemeinfrei

WEG MIT
§219a!