Schlagwort: marie curie

Isabelle Stone

* 1868 • † 1944

Isabelle Stone (Link Englisch) kam in Chicago zur Welt, besuchte das Wellesley College in Masschusetts und die Columbia University in New York, ihren Doktortitel in Physik machte sie an der University of Chicago. Zu diesem Zeitpunkt war sie die erste US-amerikanische Frau mit einer Promotion in diesem Fach.

Beim Internationalen Kongress der Physiker in Paris (Datum unbekannt) war sie eine von zwei Frauen unter 836 Besuchern – die andere Frau war Marie Curie. Sie gehörte außerdem zu den Gründungsmitgliedern der American Physical Society.

Isabelle Stone untersuchte den elektrischen Widerstand von dünnen Schichten. In ihrer Doktorarbeit wies sie nach, dass Dünnschichten von Metallen eine höhere elektrische Leitfähigkeit aufweisen als das gleiche Metall in massiven Körpern.

28/2020: Nettie Stevens, 7. Juli 1861

frauenfiguren nettie stevens
Nettie Stevens at work at the Naples Zoological Station in 1909.
By Bryn Mawr College Special Collections – source, Public Domain

Der Vater von Nettie Stevens war Zimmermann, der nach dem frühen Tod seiner Ehefrau – sie starb, als Nettie drei Jahre alt war, kurz nach der Geburt der jüngeren Schwester – sein zwei überlebenden Kinder alleine versorgen musste. Nach einem Umzug von Vermont nach Massachusetts wurde er allerdings mit seinem Handwerksunternehmen so erfolgreich, dass er beiden Töchtern zumindest die High School finanzieren konnte. 1880 machte Nettie dort ihren Abschluss, dann arbeitete sie in New Hampshire als Lehrerin für Zoologie, Physiologie, Mathematik, Englisch und Latein. Nach drei Jahren in diesem Beruf hatte sie geng Geld gespart, um an die Universität zurückzukehren. An der Westfield Normal School (heute Westfield State University) absolvierte sie ein Studienprogramm, das eigentlich auf vier Jahre ausgelegt war, innerhalb von zwei Jahren; im Anschluss daran arbeitete sie wieder als Lehrerin.

Erst ein gutes Jahrzehnt später konnte Nette Stevens sich von gespartem Geld ein tiefergehendes Studium leisten. 1896 schrieb sie sich an der Stanford University ein und erreichte 1899 einen Bachelor-, ein Jahr später einen Master-Abschluss in Biologie. Im Laufe ihrer Studien hatte sie begonnen, sich mit Histologie zu befassen, für ihr Doktorandenstudium in diesem Fach wechselte sie 1900 an das Bryn Mawr College, denn dort war Edmund Beecher Wilson Leiter der biologischen Fakultät gewesen, den Stevens bewunderte, und auch zu seinem Nachfolger Thomas Hunt Morgan schaute sie auf. Sie konnte dank eines Stipendiums im Rahmen ihres Studiums in Neapel und Würzburg Forschung betreiben, bevor sie mit Morgan als Doktorvater ihre Dissertation einreichte. Das Thema ihrer Arbeit war die Zellregeneration in einfachen Mehrzellern, die Entwicklung von Spermien und Eiern, Urkeimzellen von Insekten und die Zellteilung in Seeigeln und Würmern, sie erlangte damit 1903 ihren Doktortitel. Bryn Mawr bleib für ihr weiteres restliches Leben ihre Wirkungsstätte – ihr Ziel war es, an ihre Alma Mater als Professorin fest angestellt zu werden. Zunächst blieb sie als Lehrkraft für experimentelle Morphologie, 1904 begann sie einjähriges ihr Postdoc am Carnegie Institute of Science in Washington, Edmund B. Wilson und Thomas H. Morgan schrieben ihr für diese Position die benötigten Empfehlungen. Stevens erhielt ein Stipendium für ihre Erforschung der Vererbung, insbesondere wollte sie die Mendelschen Regeln (damals noch ‚Gesetze‘) überprüfen hinsichtlich ihrer Gültigkeit für die Geschlechtsdetermination.

Das erste Tier, das sich Stevens für ihre Untersuchungen vornahm, war der Mehlkäfer (von dem die Mehlwürmer gelegt werden) Tenebrio molitor. In den Zellen dieser Insekt entdeckte Stevens zum ersten Mal das Chromosom, das sich nach ihren Beobachtungen auf die unterschiedlichen Geschlechter der erwachsenen Tiere auswirkte (sie nannte es jedoch damals noch nicht das Y-Chromosom). Sie weitete ihre Forschung auf andere Insekten aus, unter anderem auf die Taufliege Drosphila melanogaster, die sie fortan in ihren Labors züchtete. Nettie Stevens war es, die erkannte, wie gut diese Art aufgrund der kurzen Lebenszyklen, einem kleinen Chromosomensatz und einer großen Anzahl Nachkommen pro Befruchtung für genetische Untersuchungen geeignet war, und tatsächlich war sie es auch, die Thomas H. Morgan ebenfalls davon überzeugte. Noch heute gilt Drosophila als ideales Forschungsobjekt und Morgan wird zumeist als Begründer dieser Praxis geführt.

Zur Zeit von Stevens‘ Forschungen herrschte noch die Ansicht, dass das Geschlecht eines Kindes im Mutterleib von der Umwelt oder dem Verhalten der Mutter beeinflusst wurde – in jedem Fall lag es in der „Verantwortung“ der Mutter, mit welchem Geschlecht ein Kind auf die Welt käme. Clarence Erwin McClung hatte kurze Zeit vor Nettie Stevens die Vermutung geäußert, dass das Geschlecht eines Lebewesens durch das X-Chromosom in den Keimzellen bestimmte würde, doch Thomas H. Morgan und auch Edmund B. Wilson bestritten dies zunächst. Während Stevens bei ihrer Erforschung der Entstehung des chromosomalen Geschlechtes die Keimzellen beider Geschlechter untersuchte, erforschte Wilson allein an Spermien die Spermatogenese; er sollte das damit begründen, dass Eizellen zu fetthaltig für den Färbeprozess seien und deswegen nicht untersucht werden könnten. Nettie Stevens fand hingegen in den Zellen ihrer Taufliegen Paare mit einem großen und einem kleinen Chromosom, Paare mit zwei großen Chromosomen und einzelne große Chromosomen (XO), dass jedoch nur die Individuen mit einem Groß-Klein-Paar den männlichen Phänotyp aufwiesen. Sie schloss daraus, dass es das heute so genannte Y-Chromosom war, dass den geschlechtlichen Phänotyp bestimmte (was Stevens noch nicht wissen konnte: dass dieser Phänotyp dann auch noch anderen genetischen Einflüssen unterliegt, siehe Intergeschlechtlichkeit). Der Artikel, den sie darüber schrieb, brachte ihr einen Preis von $1.000,- ein für den „besten wissenschaftlichen Artikel von einer Frau geschrieben“, und das Carnegie Institute veröffentlichte ihre Arbeit in den „Studien zur Spermatogenese“. Doch weder von ihren männlichen Vorbilden noch von der wissenschaftlichen Gemeinschaft wurde sie als Forscherin und Entdeckerin anerkannt, noch weniger gewürdigt. Edmund B. Wilson überarbeitete, nachdem er Stevens Forschungsergebnisse gelesen hatte, seine eigene Arbeit dahingehend, dass sie zu Stevens Ergebnissen passen, und kam ihr dann mit der Veröffentlichung seiner Ergebnisse zuvor – er dankte ihr für ihre Entdeckung in einer Fußnote. 1906 wurden Wilson und Thomas H. Morgan eine Einladung, auf einer Konferenz über ihre Entdeckungen der Geschlechtsdetermination zu sprechen, doch Nettie Stevens wurde übersehen.

1908 erhielt Stevens noch ein Stipendium von der American Association of University Women und 1912 wurde ihr von Bryn Mawr nach einer Dekade als außerordentliche Professorin endlich eine Stelle als festangestellte Professorin ohne Lehrverpflichtung angeboten. In ihrer kurzen Zeit als Wissenschaftlerin hatte sie bis dahin 38 Publikationen veröffentlicht, doch sie konnte die lang ersehnte Stelle nicht mehr antreten: Am 4. Mai 1912 starb sie mit nur 51 Jahren an Brustkrebs.

Noch in seinem Nachruf rückte Thomas H. Morgan die eigentliche Vorreiterin seiner wissenschaftlichen Erfolge auf die Seitenlinie. In seinem Nachruf schrieb er, sie habe „Anteil an einer Entdeckung von Bedeutung“ gehabt, behauptete allerdings, sie habe McClungs Fehlannahme bestätigt, dass X-Chromosom sei für den geschlechtlichen Phänotyp verantwortlich – wohingegen sie gerade festgestellt hatte, dass es das kleinere Y-Chromosom sein musste. Edmund B. Wilson unvollständige Forschungsergebnisse seien „eine gemeinsame Entdeckung“ mit Stevens gewesen, eine Aussage, die Wilson später, wiederum in einer Fußnote, korrigierte. Auch habe es ihr „zeitweise an Inspiration gefehlt, die die reine Tatsache einer Entdeckung für eine breitere Sichtweise nutzt“ – es war ihm womöglich tatsächlich nicht bewusst, dass dieser Mangel an Inspiration darin begründet lag, dass sie vom anregenden Austausch mit Kollegen, etwa auf Konferenzen, ausgeschlossen war.

Thomas H. Morgan gewann 1933 den Nobelpreis für Medizin für Erkenntnisse zur Vererbung, die zu großen Teilen auf den intensiven Forschungen von Nettie Stevens basierte.

1994 wurde sie in die National Women’s Hall of Fame aufgenommen. 2017 benannte die Westfield State University einen Gebäudekomplex nach ihr, in dem einige MINT-Fachbereiche untergebracht sind.

FemBio und Vox sind auch verärgert über den Matilda-Effekt.

*

Ebenfalls diese Woche

7. Juli 1860: Alice Johnson (Link Englisch)
1884 wurde eine Arbeit dieser britischen Zoologin als erstes Schriftstück einer Frau im Protokoll der Royal Society erwähnt. Sie beschäftigte sich auch mit Telepathie.

10. Juli 1724: Eva Ekeblad
Weil sie sich mit den Möglichkeiten des Kartoffelanbaus in Europa beschäftigte, gilt die schwedische Adlige als Agrarwissenschaftlerin. Sie entwickelte Methoden zur Gewinnung von Stärke und Alkohol aus Kartoffeln, unabhängig davon auch ein Verfahren zum Bleichen von Textilien. Sie war 1748 die erste Frau, die in der Königlich Schwedischen Akademie der Wissenschaften aufgenommen wurde, und blieb die einzige bis 1910, als Marie Curie ebenfalls aufgenommen wurde.

12. Juli 1913: Mildred Cohn
Diese amerikanische Biochemikerin und Biophysikerin entwickelte Methoden und Anwendungen in der Kernspinresonanzspektroskopie, die es ermöglichten, metabolische Prozesse auf molekulaler Ebene sichtbar zu machen.

26/2020: Maria Goeppert-Mayer, 28. Juni 1906

Maria Goeppert wurde in Katowice, damals Preußen, in eine Familie von Professoren geboren. Als sie 10 Jahre alt war, zog sie mit ihren Eltern nach Göttingen. Dort besuchte sie eine höhere Schule, die speziell Mädchen für ein Universitätsstudium vorbereiten sollte; mit 17, ein Jahr früher als ihre Komiliton:innen, machte sie als eines von drei oder vier Mädchen das Abitur.

Zunächst studierte sie an der Universität Göttingen Mathematik, zu dieser Zeit um 1924 müsste sie auch Emmy Noether dort angetroffen haben. Nach drei Jahren Studium wechselte Goeppert jedoch zur Physik, in der sie nach weiteren drei Jahren ihre Dissertation über die Theorie der Zwei-Photonen-Absorption schrieb. Diese Theorie, dass ein Molekül oder Atom zur gleichen Zeit (innerhalb von 0,1 Femtosekunde) zwei Photonen aufnehmen kann und dabei in einen energetisch angeregten Zustand übergeht, konnte zu dieser Zeit nicht experimentell nachgewiesen werden. Dieses Ereignis ist extrem unwahrscheinlich: Die Absorption eines Photons in einem Molekül oder Atom geschieht in etwa einmal pro Sekunde unter guten Bedingungen, das heißt bei hoher Lichteinstrahlung. Die gleichzeitige Absorption zweier Photonen tritt hingegen unter den gleichen Bedingungen nur alle 10 Millionen Jahre auf. Erst 1961 konnte Goepperts Theorie dank der Erfindung des Lasers nachgewiesen werden, die Einheit, in der die Wahrscheinlichkeit einer Zwei-Photonen-Absorption gemessen wird, heißt ihr zu Ehren GM (Goeppert-Mayer). Ihre Prüfer im Rigorosum waren Max Born, James Franck und Adolf Windaus, alles drei zu diesem Zeitpunkt oder spätere Nobelpreisträger. Eugene Wigner, ebenfalls Nobelpreisträger, bezeichnete ihre Arbeit später als „Meisterwerk der Klarheit und Greifbarkeit“.

Im gleichen Jahr, in dem sie ihren Doktortitel errang, hatte sie auch Joseph Edward Mayer geheiratet, einen Fellow der Rockefeller Foundation und Assistent von James Franck. Mit ihm zog sie nach ihrer Promotion in die USA, wo Mayer als außerordentlicher Professor an der Johns Hopkins University lehrte. Goeppert-Mayer konnte dort keine Anstellung finden, denn die Hochschule hatte strenge Nepotismus-Regeln, die die gleichzeitige Beschäftigung von Ehepaaren untersagten. Diese waren ursprünglich eingerichtet worden, um Gönnerschaft zu unterbinden, doch inzwischen hielten sie hauptsächlich die Ehefrauen der Professoren von beruflicher Tätigkeit auf dem Campus ab. Goeppert-Mayer konnte sich schließlich gegen sehr kleines Gehalt im Fachbereich für Physik an der deutschen Korrespondenz beteiligen, so hatte sie auch Zugang zu den Laboren. In dieser Zeit arbeitete sie mit Karl Herzfeld an seinen Forschungen zur Quantenmechanik, sie unterrichtete auch unentgeltlich und schrieb eine Arbeit über doppelten Betazerfall. Sie kehrte bis 1933 noch dreimal nach Göttingen zurück, unter anderem um dort mit Max Born an einem Artikel für das Handbuch der Physik zu arbeiten. 1933 verloren Born und James Franck aufgrund der Judenverfolgung unter der faschistischen Regierung Deutschlands ihre Stellen an der Göttinger Universität, James Franck folgte seinem ehemaligen Assistenten nach Baltimore.

1937 wurde Mayer allerdings von der Johns Hopkins Universität entlassen, die Gründe dafür sind unklar. Mayer vermutete Misogynie, nämlich dass der Dekan es nicht gerne sähe, wie frei Mayer seiner Frau Zugang zu den Laboren gewährte. Herzfeld stimmte ihm zu, möglicherweise fühle sich aber auch das amerikanische Kollegium von „zu vielen Deutschen“ (das Ehepaar Goeppert-Mayer, Herzfeld und Franck) überrannt. Es soll auch Beschwerden über die Inhalte des Chemie-Unterrichts gegeben haben, den Goeppert-Mayer hielt: Sie spreche zu viel über moderne Physik. Goeppert-Mayer lehrte noch bis 1939 in Baltimore, dann wechselte das Ehepaar gemeinsam an die Columbia University in New York. Joseph Mayer konnte dort als Professor lehren, Maria Goeppert-Mayer bekam hier zwar ein eigenes Büro, doch für ihre Tätigkeit an der Fakultät wiederum kein Gehalt.

An der Columbia University freundete sich Goeppert-Mayer mit dem Chemiker Harold Urey und dem Physiker Enrico Fermi an und schloss sich deren Forschungen an, zu den Valenzelektronen der bis dahin noch unentdeckten transuranischen Elementen. Die Anzahl der Valenzelektronen, das heißt der Elektronen auf der äußersten Schale eines Elements, die an chemischen Verbindungen beteiligt sein können, bestimmen die Zugehörigkeit zu den unterschiedlichen Gruppen des Periodensystems und lassen Vermutungen über ähnliche chemikalische Eigenschaften zu. Basierend auf dem Thomas-Fermi-Modell, das die Elektronenhülle wie eine Gaswolke interpretiert, stellte Goeppert-Mayer die Voraussage auf, dass die Elemente, die im Periodensystem hinter dem Uran folgen müssten, zur Gruppe der Metalle der Seltenen Erden gehören würden. Diese Voraussage sollte sich als wahr herausstellen.

1941 wurde Maria Goeppert-Mayer zur Fellow der American Physical Society und im Dezember dieses Jahres trat sie ihre erste bezahlte Lehrtätigkeit am Sarah Lawrence College an. Nachdem die USA in den Zweiten Weltkrieg eingetreten waren, schloss sie sich im Folgejahr in Teilzeit dem Manhattan-Projekt an. Ihre Aufgabe wurde es, einen Weg zu finden, das Isotop 235U, einen wichtigen Spaltstoff, in natürlichem Uran auszusondern. Dafür untersuchte Goeppert-Mayer die chemischen und thermodynamischen Eigenschaften von Uranhexafluorid (Uran(VI)-fluorid), einer Verbindung von Uran und Fluor. Sie erwog die Möglichkeit, das gewünschte Isotop mit Hilfe einer photochemischen Reaktion aus dem Stoff auszufällen, doch dies war zu dem Zeitpunkt noch nicht praktikabel; auch hier wurde die Erfindung des Lasers notwendig, um Goeppert-Mayers Theorien in die Praxis umzusetzen.

Ihr Freund Edward Teller holte sie auch kurzzeitig ins Team seines Opacity Project, das die Erschaffung einer Superbombe (Link Englisch) anstrebte. Ihr Mann wurde an die Front im Pazifik berufen, und Goeppert-Mayer beschloss, die beiden Kinder in New York zu lassen und mit Teller in Los Alamo am Project Y zu arbeiten.

Nach dem Ende des Krieges wurde Joseph Mayer Professor für Chemie an der University of Chicago, Maria Goeppert-Mayer wurde von der Hochschule als freiwillige außerordentliche Professorin eingestellt. Teller folgte ihr nach Illinois, um die Entwicklung thermonuklearer Waffen voranzutreiben. Als ihr eine Teilzeitstelle am Argonne National Laboratory angeboten wurde, als leitende Physikerin in der Abteilung für theoretische Physik, antwortete sie erstaunlicherweise: „Ich verstehe nichts von Kernphysik!“ Sie trat die Stelle jedoch an. Außerdem programmierte sie den ENIAC des Aberdeen Proving Ground auf eine bestimmte Vorgehensweise für Schnelle Brüter.

Ihre wichtigeste, erfolgreichste Arbeit leistete Goeppert-Mayer trotz dieser vielseitigen Einsätze in den 1940ern. Während sie an der University of Chicago und dem Argonne angestellt war, entwickelte sie ein mathematisches Modell für den Aufbau des Schalenmodells, das sie 1950 veröffentlichte. Sie erklärte, warum eine bestimmte Anzahl Nukleone (Protonen und Neutronen) in Atomkernen besonders häufig vorkamen und besonders stabil sind. Diese Zahlen nannte Eugene Wigner die ‚Magischen Zahlen‚, die Reihe der „stabilen“ Protonen- und Neutronen-Anzahlen lautet 2, 8, 20, 28, 50, 82 und 126. Das Schalenmodell war für die Elektronen-aufenthaltswahrscheinlichkeitsräume des Atoms bereits erfolgreich, doch vom Atomkern bestand zu diesem Zeitpunkt noch ein anderes Modell, welches jedoch nicht die Inseln der Stabilität in den Elementen erklärte. Im Gespräch mit Enrico Fermi stellte dieser Goeppert-Mayer die Frage, ob es einen Hinweis auf Spin-Bahn-Kopplung gäbe – einen Zusammenhang des Spin, also der Eigendrehung eines Teilchens, und seiner Bahn, also seiner Bewegung innerhalb des Atoms, der sich in der Stärke der Wechselwirkung des Teilchens bemerkbar macht. Diese Kopplung war für Elektronen bekannt, doch angestoßen von Fermis Frage stellte Goeppert-Mayer die Theorie auf, dass dieser Effekt auch im Atomkern wirke und konnte so die Bedeutung der ‚magischen Zahlen‘ in der Kernphysik erklären. Sie erläuterte es kurz und anschaulich wie folgt:

Denken Sie an einen Raum voller Walzertänzer:innen. Nehmen wir an, sie durchtanzen den Raum in Kreisen, jeder Kreis umschlossen von einem weiteren Kreis. Nun stellen Sie sich vor, Sie könnten zweimal so viele Tänzer:innen in einem Kreis unterbringen, indem Sie ein Paar mit und das andere Paar entgegen dem Uhrzeigersinn tanzen lassen. Nun bringen Sie noch weitere Variationen ein; alle Paare drehen sich um sich selbst wie Kreisel, während sie durch den Raum kreisen, jedes Paar dreht sich also um sich selbst (twirling) und durch den Raum (circling). Aber nur einige von denen, die gegen den Uhrzeigersinn durch den Raum tanzen, drehen sich auch im Uhrzeigersinn um sich selbst. Die anderen drehen sich im Uhrzeigersinn um sich selbst, während sie gegen den Uhrzeigersinn durch den Raum tanzen. Das gleiche ist wahr für die, die im Uhrzeigersinn durch den Raum tanzen: Einige drehen sich im Uhrzeigersinn um sich selbst, andere dagegen.

Übersetzt nach dem Abschnitt ‚Nuclear shell modell‘ des englischen Wikipediabeitrags

Zum gleichen Schluss waren zeitgleich die Physiker Otto Haxel, Hans D. Jensen und Hans E. Suess in Hamburg gekommen; Goeppert-Mayers Arbeit wurde zur Prüfung im Februar 1949 eingereicht, die der Hamburger Forscher im erst im April. Als Goeppert-Mayer in Juni 1949 die Ankündigung der Ergebnisse ihrer Kollegen las, versuchte sie noch, ihre Veröffentlichung zu verschieben, damit beide Arbeiten nebeneinander erscheinen könnten, doch dies ließ sich nicht mehr einrichten. So wurde zuerst Goeppert-Mayer als die Entdeckerin des Schalenmodells für den Atomkern bekannt. Es entstand jedoch ein gutes kollegiales Verhältnis zwischen Goeppert-Mayer und Jensen und die beiden brachten 1950 gemeinsam ein Buch zu ihrer Theorie heraus.

In den 1950er Jahren wurde Maria Goeppert-Mayer Mitglied der Heidelberger Akademie der Wissenschaften und der National Academy of Sciences, doch erst 1960 wurde sie endlich vollwertiges Mitglied einer Fakultät, als sie den Lehrstuhl für Physik an der University of California übernahm. Bereits kurz darauf erlitt sie einen Schlaganfall, der sie jedoch nicht von der Arbeit abhalten sollte. 1963 erhielt sie gemeinsam mit Hans D. Jensen eine Hälfte des Nobelpreises für Physik, die andere Hälfte erhielt Eugene Wigner. Goeppert-Mayer war die zweite weibliche Gewinnerin dieses Preises nach Marie Curie, 60 Jahre zuvor. Zu dieser Errungenschaft titelte damals die San Diego Tribune: ‚S.D. Mother Wins Nobel Physics Prize‘ (‚Mutter aus San Diego gewinnt Physik Nobelpreis‘). Hierzu bezog die Nachfolgepublikation The San Diego Union-Tribune im Oktober 2018 Stellung, anlässlich der Verleihung des Nobelpreises für Physik an die dritte Frau überhaupt, Donna Strickland, 55 Jahre nach Goeppert-Mayer.

Zwei Jahre später wurde sie zum Fellow der American Academy of Arts and Sciences. 1971 erlitt sie einen Schlaganfall, in dessen Folge sie ein Jahr lang im Koma lag, bis sie am 20. Februar 1972 verstarb. Die American Physical Society rief 1986 den Maria Goeppert-Mayer Award ins Leben, der jugnen Physikerinnen verliehen wird. Gewinnerinnen müssen einen Doktortitel innehaben, sie erhalten einen Geldbetrag und die Möglichkeit, an vier größeren Institutionen Vorträge über ihre Arbeit zu halten. Auch das Argonne National Laboratory verleiht jedes Jahr im Namen Goeppert-Mayers einen Preis an herausragende Wissenschaftlerinnen, ihre letzte Universität in Kalifornien hält ein jährliches Symposium in ihrem Namen, in dem Wissenschaftlerinnen zusammenkommen. Ein Krater auf der Venus von 35 Kilometer Durchmesser ist nach Maria Goeppert-Mayer benannt.

*

Ebenfalls diese Woche

22. Juni 1939: Ada Yonath
Über diese Chemikerin schrieb ich im Juni 2018.

23. Juni 1871: Jantine Tammes
Die Leidtragende des Matilda-Effektes trug entscheidende Erkenntnisse zur Pflanzengenetik bei, die jedoch ihrem männlichen Kollegen zugeschrieben wurden.

23. Juni 1951: Maria Klawe
Die amerikanische Informatikerin leitet seit 2006 als erste Frau das Harvey Mudd College in Kalifornien.

26. Juni 1862: Ella Church Strobell (Link Englisch)
Gemeinsam mit ihrer Kollegin Katherine Foot trug die Zellbiologin mit Fotografien zum besseren Verständnis der Chromosomen und ihrer Funktion bei.

12/2017: Matilda Joslyn Gage, 24.3.1826

Matilda Joslyn Gage

English below
Wiki deutsch
Matilda Joslyn Gage war eine amerikanische Frauenrechtlerin, die mehrere Bücher zu den umgebenden Themen der Frauenbewegung veröffentlichte, etwa zur Trennung von Staat und Kirche und zu den Rechten der amerikanischen Ureinwohner. Ihre liberalen und inklusiven Ansichten verbreitete sie unter anderem auch in ihrer Zeitschrift The National Citizen and Ballot Box.

Als sich 1890 die zwei größten, konservativ-christlich motivierten Frauenrechtsorganisationen NWSA und AWSA zu NAWSA zusammenschlossen, waren sie geeint in dem Bestreben, das Frauenwahlrecht zu erlangen, weil die weibliche Mäßigung die Politik beeinflussen und christliche Werte einbringen sollte. Gage war weder mit der einseitigen Priorität des Frauenwahlrechts noch mit dem Wunsch nach christlicher Einflussnahme einverstanden und gründete die Woman’s National Liberal Union.

Matilda Joslyn Gage hatte stets mehr als Frauenwahlrecht im Blick, ihre Ziele waren grundsätzlicherer und umfassender Natur. Für ihren Einsatz für die Rechte der Haudenosaunee, bei denen sie gelebt hatte und deren Gesellschaftsform sie als Beispiel für ein Matriachat studiert hatte, wurde sie in deren Rat der Mütter aufgenommen.

In ihrem Essay Die Frau als Erfinderin (1870) beschrieb sie einen Effekt, der 1993 von der Wissenschaftshistorikerin Margaret W. Rossiter nach ihr benannt wurde: dass die Erkenntnisse und Errungenschaften von Frauen in Wissenschaft und Forschung entweder an den Rand gedrängt, heruntergespielt und/oder im Laufe der Zeit männlichen Kollegen zugeschrieben werden. Bekannteste Beispiele hierfür sind Marie Curie, Lise Meitner und Rosalind Franklin.

*

Wiki englisch
Matilda Joslyn Gage was an American suffragette who published several books on the surrounding topics of the women’s movement, e.g. on the separation of church and state and on the rights of Native Americans. She spread her liberal and inclusive opinion in her paper The National Citizen and Ballot Box, among other publications.

When in 1890 two of the largest women’s rights organisations with conservative Christian motivations, the NWSA and the AWSA, merged to form the NAWSA, they were united in their effort for women’s right to vote because the feminine temperance was supposed to influence politics and install Christian values. Gage did not agree with the singular priority of voting rights nor with the desire for Christian influence, and founded the Woman’s National Liberal Union.

Matilda Joslyn Gage always had her sights on more than voting rights, her goals were of a more fundamental and global nature. For her support of the Haudenosaunee’s struggle, with whom she had lived to study their society as an example of the matriarchy, she was admitted to their Council of Matrons.

In her essay Woman as Inventor (1870) she described an effect that in 1993 was named after her by science historian Margaret W. Rossiter: how discoveries and achievements of women in science and research are either marginalised, downplayed and/or attributed to their male colleagues over time. Wellknown examples for this are Marie Curie, Lise Meitner and Rosalind Franklin.

*

The Gage Home – The Matilda Joslyn Gage Foundation

Bild: Von 19th century photograph, Gemeinfrei