Schlagwort: nobelpreis für physik

Matilda und die verschwundenen Frauen

Dieser Text ist als Beitrag zur Blogparade der Münchner Stadtbibliothek entstanden, in der es um Frauen und Erinnerungskultur geht. Während die Frage eigentlich in die Richtung der Literatur- und Kunst-Blogger:innen ging, trieb mich in diesem Jahr eben besonders dieser Begriff um, der wie die Hand in die Stulpe passt. Nur wenige Tage zuvor hat auch Melanie Jahreis über die scheinbar fehlenden Forscherinnen und Erfinderinnen geschrieben!

Wenn im Weiteren von Frauen und Wissenschaftlerinnen gesprochen wird, möchte ich voranstellen, dass Gage und Rossiter ihren Blick auf Frauen allgemein richten, wir aber natürlich alle wissen, dass der Effekt zwar für weiße Frauen ein Problem ist, Womxn of Colour aber in der Intersektion von Sexismus und Rassismus wesentlich härter getroffen werden. Sie tauchten sozusagen noch gar nicht am Platz auf, als weiße Frauen immerhin schon auf der Ersatzbank sitzen durften.

„Keine Aussage über die Frau ist gebräuchlicher, als dass sie keinen erfinderischen oder mechanischen Schöpfergeist habe“, schreibt Matilda Joslyn Gage 1870 in ihrem Essay Woman as Inventor. Die amerikanische Suffragette, die sich auch für die Abschaffung der Sklaverei und die Rechte amerikanischer Ureinwohner einsetzte, schlägt in ihrem Text den Bogen von den schöpferischen Gottheiten Ägyptens – Isis – und Griechenlands – Pallas Athene und Ceres – zu Leizu, die in China als die Erfinderin der Serikultur verehrt wird, und weiter zu zahlreichen Patenten der Neuzeit, die auf Ideen von Frauen zurückgehen. Sie nennt klarsichtig die Gründe, warum Namen von Frauen seltener auf Patenten erscheinen und warum Erfinderinnen der Allgemeinheit meist weniger bekannt sind: „Während, wie aufgezeigt wurde, viele der wichtigsten Erfindungen der Welt der Frau zu verdanken sind, ist der Anteil der weiblichen Erfinderinnen viel kleiner als der männlichen, welches aus der Tatsache entsteht, dass die Frau nicht die gleiche Fülle an Freiheit besitzt wie der Mann. Eingeschränkt in Bildung, gewerblichen Chancen und politischer Macht, ist dies eines der vielen Beispiele, bei denen sich ihre Herabwürdigung schädlich auf die ganze menschliche Rasse auswirkt. […] Der politischen Macht entzogen, wie die Frau ist, sieht sie sich der Verachtung für ihr Geschlecht, offener und verborgener Verachtung der Weiblichkeit, herablassender Anspielungen über ihre intellektuellen Fähigkeiten gegenüber – alles dient dazu, den Ausdruck ihres erfinderischen Schöpfergeistes zu verhindern.“ So sind die Patente für Erfindungen von Frauen oftmals im Namen ihres Ehemannes als ‚Eigentümer‘ oder Vormunde der Frauen eingetragen – denn als Eigentümer der Frauen sind sie auch Eigentümer derer geistigen Produkte.

frauenfiguren matilda wie frauen in der wissenschaft verschwinden egreniermaschine
Egreniermaschine, gebaut von Eli Whitney, vermutlich nach einer Idee von Catharine Greene Miller
By Tom Murphy VII – Taken by uploader, user:brighterorange., Public Domain

Neben der männlichen Ablehnung einer grundsätzlichen weiblichen Befähigung nennt sie auch die strukturelle Gewalt der partriarchalischen Gesellschaft, die unter anderem durch soziale Ächtung geschäftstüchtiger Frauen ausgeübt wurde; dies insbesondere anhand der Erfinderin der Egreniermaschine, die der Ingenieur Eli Whitney nur nach der Idee von Catharine Greene Miller (Link Englisch) habe bauen können. Greene Miller habe ihren Namen nicht auf das Patent gesetzt, da derlei Unternehmergeist an einer Dame ungebührlich gewesen wäre. (Diese Anekdote ist allerdings umstritten.)

*

Mehr als 100 Jahre später machte die Wissenschaftshistorikerin Margaret W. Rossiter (Link Englisch) eine ähnliche, immer noch aktuelle Beobachtung. Rossiter hatte während ihres Studiums in Yale bei einem formlosen Treffen von Lehrenden und Studierenden gefragt, ob es jemals weibliche Wissenschaftlerinnen gegeben habe. Die Antwort: „Nein, gab es nicht, jede Frau, die als solche in Frage käme, arbeitete nur einem männlichen Wissenschaftler zu.“ Dies Mitte der 1970er Jahre, wohlgemerkt. Mit dieser Antwort verständlicherweise mehr als unzufrieden, konzentrierte sich Rossiter auf die Rolle der Frauen in der amerikanischen Wissenschaftsgeschichte – und fand in ihrer Arbeit als Postdoktorandin die Biografien hunderter Wissenschaftlerinnen unter anderem im Nachschlagewerk American Men of Science (sic!, inzwischen heißt das Werk American Men and Women of Science, nächster Schritt hoffentlich: American Persons of Science). Sie schrieb darüber in einem Artikel, der von den Magazinen Science und Scientific American abgelehnt wurde, aber schließlich von American Scientist veröffentlicht wurde.

Obwohl ihr nur lauwarmes Interesse aus Wissenschaftler- wie Historiker-Kreisen entgegenschlug und sogar einige Wissenschaftlerinnen meinten, es gäbe in dieser Hinsicht nichts zu entdecken, betrieb Rossiter ihre Forschung weiter. Die Suche nach „verschwundenen“ weiblichen Wissenschaftlerinnen erbrachte immer weitere Funde, sodass Rossiter schließlich nicht nur ein Buch, sondern ganze drei Bände zum Thema Frauen in der Wissenschaft schreiben sollte. 1981 erhielt sie ein Guggenheim-Stipendium, das ihre Arbeit zum Teil finanzierte. Die drei Bände ihrer Arbeit heißen Women Scientists in America, Struggles and Strategies to 1940 (1982), Women Scientists in America: Before Affirmative Action, 1940-1972 (1995) und Women Scientists in American Volume 3: Forging a New World Since 1972 – letzteres wurde 2012 veröffentlicht.

Rossiters eigene akademische Karriere selbst blieb auch nicht unberührt von misogynen Hindernissen, sodass sie sich zeitweise so fühlte wie die Frauen, über die sie schrieb: „Ich nehme an, ich bin eine 78rpm-Schallplatte in einer 33rpm-Welt.“ (Quelle: Wiki) Sie hatte Schwierigkeiten, eine feste Stelle an einer Universität zu erlangen, weil sie als Wissenschaftshistorikerin angeblich keinem Fachbereich richtig angehöre. Eine ursprünglich einjährige Anstellung an der Cornell University wurde zwar auf drei Jahre ausgedehnt, jedoch nur unter finanziellen Einschränkungen. Erst als eine andere Universität ihr eine volle Professur anbot, riss sich ihr Arbeitgeber zusammen und schuf einen Fachbereich für Wissenschaftsgeschichte, in dem sie fest angestellt wurde. Danach konnte sie auch den zweiten Band ihrer Buchreihe herausbringen.

1993 veröffentlichte Rossiter den Artikel, in dem sie den Begriff Matilda-Effekt (hier lohnt sich, wie des Öfteren, auch der Blick auf den englischen Beitrag) prägte: The Matthew Matilda Effect in Science. Sie greift darin auf einen anderen Effekt zurück, der 1968 vom amerikanischen Soziologen Robert K. Merton als Matthäus-Effekt beschrieben wurde. Bezugnehmend auf die Bibelstelle Matthäus 13:12 – „Denn wer da hat, dem wird gegeben, dass er eine Fülle habe; wer aber nicht hat, dem wird auch das genommen, was er hat.“ – bezeichnet er die Tatsache, dass sich bei Personen, die bereits einen Erfolg zu verzeichnen haben, weitere Erfolge anschließen. In der wissenschaftlichen Welt bedeutet dies, dass, wenn ein Wissenschaftler durch ein aufsehenerregendes Forschungsergebnis Aufmerksamkeit und Sichtbarkeit erlangt, er mehr zitiert wird und sich dadurch mehr Chancen für weitere prestigeträchtige Arbeiten auftun. Gleichzeitig verschwinden andere Wissenschaftler mit ihren Ergebnissen hinter dem Glanz dieses „Genies“, ja zum Teil werden deren Erfolge fälschlicherweise auch einem bereits bekannten, erfolgreichen Wissenschaftler zugeordnet. Ironischerweise wird die Beschreibung und Untersuchung dieses Effekts zwar Robert K. Merton zugeschrieben, er stützte seine Arbeit jedoch in hohem Maß auf die Dissertation seiner zweiten Frau, Harriet Zuckerman.

Rossiter führt vor dem Hintergrund ihrer beträchtlichen Recherche für die `Women Scientists in America´-Trilogie einige Beispiele an und erläutert die unterschiedlichen Wege, wie diese Verdrängung in besonderem Maße Frauen in der Wissenschaft betrifft. So verweist sie auf die Nepotismus-Regelung an amerikanischen Universitäten (der auch ich mit ungläubigem Staunen begegnet bin), die es untersagte, dass bei einem Ehepaar beide fest bzw. mit voller Professur an einer Universität arbeiten durften; damit sollte ‚Vetternwirtschaft‘ verhindert werden, was es jedoch tatsächlich vereitelte, war die angemessene Anstellung und Bezahlung wissenschaftlich arbeitender Ehefrauen. Wissenschaftlerinnen waren auch in Gefahr, ‚für ihre Forschung‘ geheiratet zu werden, da ihre Arbeitsergebnisse dann häufig als gemeinschaftlicher Erfolg unter dem Namen des Mannes veröffentlicht werden konnten.

Unter den Beispielen für den Matilda-Effekt, die Rossiter anführt, sind mehrere, die ich auch hier auf frauenfiguren besprochen habe:

Maria Goeppert-Mayer sei ja wie Marie Curie noch recht gut weggekommen, da sie ebenbürtig mit ihren männlichen Kollegen den Nobelpreis für Physik gewonnen habe (vorher war sie jedoch von der fragwürdigen Nepotismus-Regel betroffen gewesen und hatte einen Großteil ihrer Arbeit schlecht oder unbezahlt geleistet). Andere Beispiele sind
• die Pathologin Frieda Robscheit-Robbins (Link Englisch), der 1934 Anteile des Nobelpreises für Physiologie oder Medizin zugestanden hätten
Candace Pert (Link Englisch), die an der Entdeckung der Opioidrezeptoren beteiligt war
Ruth Hubbard, deren sämtliche Forschungsarbeiten zur Biochemie des Sehens nach ihrer Eheschließung mit George Wald unter seinem Namen erfasst wurden
Isabella Karle, die noch 1985 feststellen musste, dass ihre fünfzigjährige Zusammenarbeit mit ihrem Mann an Kristallstrukturanalysen sie weniger für den Nobelpreis für Chemie qualifizierten als einen männlichen Kollegen

Nach diesen zahlreichen namentlichen, jedoch keinesfalls alleinstehenden Beispielen dafür, wie die wissenschaftliche Arbeit von Frauen von Männern angeeignet oder ihnen zugeschrieben wurde, schließt Rossiter den Artikel mit der Darlegung, warum sie sich für Matilda Joslyn Gage als Namenspatin für den Effekt entschieden hat, statt für eine der zwei biblischen Alternativen, Priszilla und Martha (die als Äquivalent zum Evangelist Matthäus nahe lägen). Sie fühlt sich der amerikanischen Menschenrechtsaktivistin am meisten verbunden, aufgrund der eingangs beschriebenen Beobachtung, und wünscht, dass diese ebenfalls in den Schatten der patriarchalen Geschichtsschreibung getauchte Aktivistin durch eine Anerkennung des Matilda-Effektes mehr Aufmerksamkeit erfahren soll.

*

In diesem Jahr der Wissenschaftlerinnen auf frauenfiguren ist mir der Matilda-Effekt in verschiedenen Formen und Abstufungen beinahe jede Woche mindestens einmal begegnet, und jedesmal hat es die Flamme feministischer Wut neu in mir angefacht. Zwei Dinge werden immer wieder deutlich. Erstens: In der männlich dominierten Welt – der Wissenschaft und allgemein – stehen Frauen unter dem Druck, sich als `die Beste´zu positionieren, um überhaupt gesehen zu werden und Raum zu erhalten; dabei müssen sie Heerscharen von guten, mittelmäßigen und auch vernachlässigbaren Männern im gleichen Arbeitsbereich überstrahlen. Frauen können sich nicht erlauben, mittelmäßig zu sein. Und zweitens: Sie sind von Anfang bis Ende (und auch heute noch) von der Unterstützung und dem Wohlwollen der Männer in ihrem Leben abhängig. Die Väter mussten die Ausbildung unterstützen und fördern, die Lehrer und Schulvorstände mussten sie als Schülerinnen und Studentinnen zulassen, die Kollegen mussten sie als gleichwertig betrachten und ihre Arbeit als solche wertschätzen, die Ehemänner mussten ihnen erlauben, weiter zu arbeiten und ihre Erkenntnisse unter dem eigenen Namen zu veröffentlichen. Andere Frauen wiesen vielleicht den Weg, aber die Männer mussten ihn ebnen – und sie vorangehen lassen.

Gegen die patriarchale Dominanz der Männer in der Wissenschaft und der Gesellschaft insgesamt müssen Wissenschaftlerinnen und Frauen allgemein immer noch ankämpfen. Rossiters Erkenntnis und Benennung des Matilda-Effektes sollte dazu beitragen, die misogyne Mechanik zu erkennen und ihr entgegenwirken zu können. Dennoch ist er an vielen Stellen noch immer nicht behoben, denn das System schreibt sich fort, der Effekt selbst wird in Zweifel gezogen und die Bücher, aus denen wir über die Geschichte und die Wissenschaft lernen, sind noch nicht alle umgeschrieben. Als ich dieses Blog ins Leben rief, ging es mir genau darum: Die Vielzahl an unterschiedlichen Frauen aufzuzeigen, die es immer gab und immer geben wird, die in allen Bereichen des Lebens ebenso nennenswert sind wie Männer. Der Matilda-Effekt ist für mich inzwischen ein gängiger Begriff und ich schaue immer öfter einmal mehr danach, ob und wie weit Frauen an wissenschaftlichen und gesellschaftlichen Errungenschaften beteiligt oder sogar federführend waren. Damit Matilda nicht mehr vergessen wird.

*

Übrigens ist es selbstverständlich ganz eigennützig, wenn ich auch hier noch einmal darauf hinweisen möchte, wie wichtig und von mir sehr geschätzt die Arbeit der Wikipedianer:innen ist, die sich besonders um das Vorhandensein und die Ausführlichkeit von Wiki-Beiträgen zu Frauen bemühen; oft gegen starke misogyne Gegenwehr. Hätte ich nicht dieses Blog und zugegebenermaßen mehr mentale Ressourcen und die innere Stärke, wäre das das nächstbeste zu frauenfiguren, womit ich meine Zeit verbringen könnte. So aber möchte ich nur `Danke´sagen und noch mehr Expert:innen und Koryphäen bitten, auf Wikipedia gegen den Matilda-Effekt tätig zu werden.

45/2020: Suzanne Comhair-Sylvain, 6. November 1898

Suzanne Comhaire-Sylvain (Link Englisch) kam in Port-au-Prince, der Hauptstadt Haitis, als Tochter des haitianischen Dichters, Anwalts und Diplomaten Georges Sylvain (Link Englisch) und dessen Frau zur Welt. Sie studierte in ihrer Geburtstadt und Kingston auf Jamaika, bevor sie in Paris ihren BSc und ihren Doktortitel in Anthropologie machte. Damit war sie die erste weibliche Anthropologin haitianischer Abstammung.

Ihr Interesse galt der haitianischen Folklore sowie der Rolle und sozialen Situation der Frau in Haiti und Afrika. Vor allem aber forschte sie zur Herkunft des haitianischen Kreol, eine Kreolsprache, die durch den Kontakt der afrikanischen Sklaven mit französischen Siedlern entstand. Das haitianische Kreol besteht aus zahlreichen französischen Vokabeln aus dem 18. Jahrhundert sowie der Niger-Kongo-Sprachen, weist aber auch Einflüsse des Spanischen, Portugiesischen, Englischen und west-afrikanischer Sprachen auf (hier lohnt sich bei Interesse auch der englische Wikipedia-Beitrag). Einen kleinen Einblick, wie haitianisches Kreol klingt, bietet der kurze Clip unten. Die Gesprächsrunde zur Geschichte und Gegenwart der Sprache klingt auch spannend.

Erste Lektionen zum Erlernen des haitianischen Kreol von HaitiHub
Eine Gesprächsrunde haitianischer Stimmen zur Geschichte und Gegenwart des Kreol

Comhaire-Sylvains Forschungen wurden wenig beachtet, da zu dieser Zeit – und auch heute noch! – Misch-Sprachen nicht allgemein als Sprachen anerkannt wurden und werden. (Dabei zeigen gerade diese jüngeren Sprachen so wundervoll das natürliche Streben nach einer Grammatik auf, etwa wie sich aus Pidgin-Sprachen, die auf das Wesentliche reduziert sind, in zweiter Generation die komplexeren Kreol-Sprachen entwickeln!)

Der polnische Sozialanthropologe Bronisław Malinowski jedoch wurde über ihre Arbeit auf Comhaire-Sylvain aufmerksam und lud sie zu sich nach London ein. Dort wurde sie seine Forschungsassistentin und besuchte zugleich weitere Kurse an der London University, später an der London School of Economics. Außerdem recherchierte sie sehr erfolgreich zu ihrem Thema in den Archiven des British Museum und schrieb daraufhin ihr Hauptwerk zu den afrikanischen Wurzeln des haitianischen Kreol (vermutlich 1953: ‚Haitian Creole: grammar, texts, vocabulary.‘).

In ihrem weiteren Leben betrieb sie Feldforschung auf Haiti, im Kongo, in Togo und Nigeria. Sie heiratete Jean Comhaire (daher der Doppelname), den belgischen Leiter des Fachbereichs für Anthropologie an der University of Nigeria in Nsukka, und leitete mit ihm eine UNESCO-Mission auf Haiti.

Suzanne Comhaire-Sylvain starb am 20. Juni 1975 in Nigeria an den Folgen eines Autounfalls.

Die Familie Sylvain ist voller wichtiger haitianischer Persönlichkeiten. Ihr Vater Georges war ein Aktivist und Symbol der Auflehnung gegen die amerikanische Besatzung Haitis, sein Bruder, Suzannes Onkel, Benito Sylvain (Link Englisch) war neben seiner journalistischen Tätigkeit ebenfalls Anwalt udn Diplomat, wie Georges, war 1900 an der Organisation des ersten Pan-Afrikanischen Kongress beteiligt und gilt mithin als einer der Mitbegründer des Panafrikanismus. Suzannes Schwester Yvonne Sylvain (Link Englisch) war die erste weibliche Ärztin haitianischer Abstammung, die erste Gynäkologin Haitis und Mitglied der Ligue Féminine d’Action Sociale (Link Englisch), die die andere Schwester, Soziologin Madeleine Sylvain-Bouchereau (Link Englisch) mitgegründet hatte.

Sämtliche Arbeiten Suzanne Comhaire-Sylvains wurden bis 2014 von den Bibliotheken der Stanford University katalogisiert und öffentlich zugänglich gemacht.

*

Ebenfalls diese Woche

4. November 1942: Patricia Bath (Link Englisch)
Als erste WoC/afroamerikanische Frau war sie Assistenzärztin der Ophthalmologie an der New York University sowie Chirurgin am UCLA Medical Center, außerdem die erste Ärztin of Colour mit einem medizinischen Patent. Sie war Pionierin der Laserchirurgie bei Katarakten (CN Bilder), hielt fünf Patente inne und gründete das Institute for the Prevention of Blindness in Washington, D.C.

6. November 1988: Alexandra Elbakyan
Die kasachische Programmiererin startete 2011 die Schattenbibliothek Sci-Hub, um wissenschaftliche Texte auch wirtschaftlich benachteiligten Studierenden zugänglich zu machen; dies allerdings unter Verletzung des Urheberrechtes.

frauenfiguren zombie marie curie xkcd Person: 'My teacher always told me that if I applied myself, I could become the next Marie Curie' MC: 'You know, I wish they'd get over me.' P: 'Zombie Marie Curie!' MC: 'Not that I don't deserve it. These two Nobels ain't decorative. But I make a sorry role model if girls just see me over and over as the one token lady scientist. Lise Meitner figured out that nuclear fission was happening, while her colleague Otto Hahn was staring blankly at their data in confusion, and proved Enrico Fermi wrong in the process. Enrico and Otto both got Nobel prizes. Lise got a National Women's Press Club award. They finally named an element after her, but not until 60 years later. Emmy Noether fought past her victorian-era finishing-school upbringing, pursued mathematics by auditing classes, and, after finally getting a PhD, was permitted to teach only as an unpaid lecturer (often under male colleagues' names).' P: 'Was she as good as them?' MC: 'She revolutionized abstract algebra, filled gaps in relativity, and found what some call the most beautiful, deepest result in theoretical physics.' P: 'Oh.' MC: 'But you don't become great by trying to be great. You become great by wanting to do something, and then doing it so hard that you become great in the process. So don't try to be the next me, Noether, or Meitner. Just remember that if you want to do this stuff, you're not alone.' P: 'Thanks.' MC: 'Also, avoid Radium. Turns out it kills you.' P: 'I'll try.'
https://xkcd.com/

7. November 1867: Marie Curie
Mit Sicherheit eine der meist genannten und verlinkten Wissenschaftlerinnen auf diesem Blog und, wie es ein Freund vor kurzem nannte, mein ‚white whale‘ (quasi mein Moby Dick). Ich werde auf diesem Blog wohl niemals einen Beitrag nur über sie verfassen, aus zweierlei Gründen: Zum einen ist ihre Biografie und Material zu ihr massiv, also viel zu lesen und unmöglich für sinnvoll zusammenzufassen. Und zum zweiten: Ihr kennt sie alle schon. Wozu sollte ich auf sie aufmerksam machen?
In einem meiner Lieblingscomics mit ihr von xkcd tritt sie als Zombie auf und lässt Wahrheitsbomben fallen, an die auch ich mich mit diesem Blog halte.

7. November 1878: Lise Meitner
48 Mal wurde sie von männlichen Kollegen für den Nobelpreis vorgeschlagen, 29 Mal davon für Physik, 19 Mal für Chemie; sechsmal allein von Max Planck, mehrfach von James Franck, Max Born und Niels Bohr, auch ihr geschätzter Kollege Otto Hahn schlug sie einmal vor. Dass sie diese Auszeichnung trotz ihrer oftmals gar nicht oder schlecht bezahlten, bahnbrechenden Arbeit auf dem Gebiet der Kernphysik niemals erhielt, macht sie zu einem prominenten, mustergültigen Opfer des Matilda-Effekts.

7. November 1939: Barbara Liskov
Über diese Mathematikerin und Programmiererin schrieb ich 2019 zu ihrem runden Geburtstag.

Nobelpreis für Physik 2020

Jetzt hätte ich mich beinahe als Ausführende des Matilda-Effektes schuldig gemacht und eine Wissenschaftlerin unterschlagen, weil sie den Nobelpreis für Physik mit Männern teilt! Ihr wisst es alle schon, der Vollständigkeit halber sage ich aber trotzdem noch mal, dass Andrea Ghez dieses Jahr gemeinsam mit anderen ausgezeichnet wurde für die Entdeckung des supermassiven kompakten Objektes (aka Schwarzes Loch) im Zentrum unserer Galaxie.

26/2020: Maria Goeppert-Mayer, 28. Juni 1906

Maria Goeppert wurde in Katowice, damals Preußen, in eine Familie von Professoren geboren. Als sie 10 Jahre alt war, zog sie mit ihren Eltern nach Göttingen. Dort besuchte sie eine höhere Schule, die speziell Mädchen für ein Universitätsstudium vorbereiten sollte; mit 17, ein Jahr früher als ihre Komiliton:innen, machte sie als eines von drei oder vier Mädchen das Abitur.

Zunächst studierte sie an der Universität Göttingen Mathematik, zu dieser Zeit um 1924 müsste sie auch Emmy Noether dort angetroffen haben. Nach drei Jahren Studium wechselte Goeppert jedoch zur Physik, in der sie nach weiteren drei Jahren ihre Dissertation über die Theorie der Zwei-Photonen-Absorption schrieb. Diese Theorie, dass ein Molekül oder Atom zur gleichen Zeit (innerhalb von 0,1 Femtosekunde) zwei Photonen aufnehmen kann und dabei in einen energetisch angeregten Zustand übergeht, konnte zu dieser Zeit nicht experimentell nachgewiesen werden. Dieses Ereignis ist extrem unwahrscheinlich: Die Absorption eines Photons in einem Molekül oder Atom geschieht in etwa einmal pro Sekunde unter guten Bedingungen, das heißt bei hoher Lichteinstrahlung. Die gleichzeitige Absorption zweier Photonen tritt hingegen unter den gleichen Bedingungen nur alle 10 Millionen Jahre auf. Erst 1961 konnte Goepperts Theorie dank der Erfindung des Lasers nachgewiesen werden, die Einheit, in der die Wahrscheinlichkeit einer Zwei-Photonen-Absorption gemessen wird, heißt ihr zu Ehren GM (Goeppert-Mayer). Ihre Prüfer im Rigorosum waren Max Born, James Franck und Adolf Windaus, alles drei zu diesem Zeitpunkt oder spätere Nobelpreisträger. Eugene Wigner, ebenfalls Nobelpreisträger, bezeichnete ihre Arbeit später als „Meisterwerk der Klarheit und Greifbarkeit“.

Im gleichen Jahr, in dem sie ihren Doktortitel errang, hatte sie auch Joseph Edward Mayer geheiratet, einen Fellow der Rockefeller Foundation und Assistent von James Franck. Mit ihm zog sie nach ihrer Promotion in die USA, wo Mayer als außerordentlicher Professor an der Johns Hopkins University lehrte. Goeppert-Mayer konnte dort keine Anstellung finden, denn die Hochschule hatte strenge Nepotismus-Regeln, die die gleichzeitige Beschäftigung von Ehepaaren untersagten. Diese waren ursprünglich eingerichtet worden, um Gönnerschaft zu unterbinden, doch inzwischen hielten sie hauptsächlich die Ehefrauen der Professoren von beruflicher Tätigkeit auf dem Campus ab. Goeppert-Mayer konnte sich schließlich gegen sehr kleines Gehalt im Fachbereich für Physik an der deutschen Korrespondenz beteiligen, so hatte sie auch Zugang zu den Laboren. In dieser Zeit arbeitete sie mit Karl Herzfeld an seinen Forschungen zur Quantenmechanik, sie unterrichtete auch unentgeltlich und schrieb eine Arbeit über doppelten Betazerfall. Sie kehrte bis 1933 noch dreimal nach Göttingen zurück, unter anderem um dort mit Max Born an einem Artikel für das Handbuch der Physik zu arbeiten. 1933 verloren Born und James Franck aufgrund der Judenverfolgung unter der faschistischen Regierung Deutschlands ihre Stellen an der Göttinger Universität, James Franck folgte seinem ehemaligen Assistenten nach Baltimore.

1937 wurde Mayer allerdings von der Johns Hopkins Universität entlassen, die Gründe dafür sind unklar. Mayer vermutete Misogynie, nämlich dass der Dekan es nicht gerne sähe, wie frei Mayer seiner Frau Zugang zu den Laboren gewährte. Herzfeld stimmte ihm zu, möglicherweise fühle sich aber auch das amerikanische Kollegium von „zu vielen Deutschen“ (das Ehepaar Goeppert-Mayer, Herzfeld und Franck) überrannt. Es soll auch Beschwerden über die Inhalte des Chemie-Unterrichts gegeben haben, den Goeppert-Mayer hielt: Sie spreche zu viel über moderne Physik. Goeppert-Mayer lehrte noch bis 1939 in Baltimore, dann wechselte das Ehepaar gemeinsam an die Columbia University in New York. Joseph Mayer konnte dort als Professor lehren, Maria Goeppert-Mayer bekam hier zwar ein eigenes Büro, doch für ihre Tätigkeit an der Fakultät wiederum kein Gehalt.

An der Columbia University freundete sich Goeppert-Mayer mit dem Chemiker Harold Urey und dem Physiker Enrico Fermi an und schloss sich deren Forschungen an, zu den Valenzelektronen der bis dahin noch unentdeckten transuranischen Elementen. Die Anzahl der Valenzelektronen, das heißt der Elektronen auf der äußersten Schale eines Elements, die an chemischen Verbindungen beteiligt sein können, bestimmen die Zugehörigkeit zu den unterschiedlichen Gruppen des Periodensystems und lassen Vermutungen über ähnliche chemikalische Eigenschaften zu. Basierend auf dem Thomas-Fermi-Modell, das die Elektronenhülle wie eine Gaswolke interpretiert, stellte Goeppert-Mayer die Voraussage auf, dass die Elemente, die im Periodensystem hinter dem Uran folgen müssten, zur Gruppe der Metalle der Seltenen Erden gehören würden. Diese Voraussage sollte sich als wahr herausstellen.

1941 wurde Maria Goeppert-Mayer zur Fellow der American Physical Society und im Dezember dieses Jahres trat sie ihre erste bezahlte Lehrtätigkeit am Sarah Lawrence College an. Nachdem die USA in den Zweiten Weltkrieg eingetreten waren, schloss sie sich im Folgejahr in Teilzeit dem Manhattan-Projekt an. Ihre Aufgabe wurde es, einen Weg zu finden, das Isotop 235U, einen wichtigen Spaltstoff, in natürlichem Uran auszusondern. Dafür untersuchte Goeppert-Mayer die chemischen und thermodynamischen Eigenschaften von Uranhexafluorid (Uran(VI)-fluorid), einer Verbindung von Uran und Fluor. Sie erwog die Möglichkeit, das gewünschte Isotop mit Hilfe einer photochemischen Reaktion aus dem Stoff auszufällen, doch dies war zu dem Zeitpunkt noch nicht praktikabel; auch hier wurde die Erfindung des Lasers notwendig, um Goeppert-Mayers Theorien in die Praxis umzusetzen.

Ihr Freund Edward Teller holte sie auch kurzzeitig ins Team seines Opacity Project, das die Erschaffung einer Superbombe (Link Englisch) anstrebte. Ihr Mann wurde an die Front im Pazifik berufen, und Goeppert-Mayer beschloss, die beiden Kinder in New York zu lassen und mit Teller in Los Alamo am Project Y zu arbeiten.

Nach dem Ende des Krieges wurde Joseph Mayer Professor für Chemie an der University of Chicago, Maria Goeppert-Mayer wurde von der Hochschule als freiwillige außerordentliche Professorin eingestellt. Teller folgte ihr nach Illinois, um die Entwicklung thermonuklearer Waffen voranzutreiben. Als ihr eine Teilzeitstelle am Argonne National Laboratory angeboten wurde, als leitende Physikerin in der Abteilung für theoretische Physik, antwortete sie erstaunlicherweise: „Ich verstehe nichts von Kernphysik!“ Sie trat die Stelle jedoch an. Außerdem programmierte sie den ENIAC des Aberdeen Proving Ground auf eine bestimmte Vorgehensweise für Schnelle Brüter.

Ihre wichtigeste, erfolgreichste Arbeit leistete Goeppert-Mayer trotz dieser vielseitigen Einsätze in den 1940ern. Während sie an der University of Chicago und dem Argonne angestellt war, entwickelte sie ein mathematisches Modell für den Aufbau des Schalenmodells, das sie 1950 veröffentlichte. Sie erklärte, warum eine bestimmte Anzahl Nukleone (Protonen und Neutronen) in Atomkernen besonders häufig vorkamen und besonders stabil sind. Diese Zahlen nannte Eugene Wigner die ‚Magischen Zahlen‚, die Reihe der „stabilen“ Protonen- und Neutronen-Anzahlen lautet 2, 8, 20, 28, 50, 82 und 126. Das Schalenmodell war für die Elektronen-aufenthaltswahrscheinlichkeitsräume des Atoms bereits erfolgreich, doch vom Atomkern bestand zu diesem Zeitpunkt noch ein anderes Modell, welches jedoch nicht die Inseln der Stabilität in den Elementen erklärte. Im Gespräch mit Enrico Fermi stellte dieser Goeppert-Mayer die Frage, ob es einen Hinweis auf Spin-Bahn-Kopplung gäbe – einen Zusammenhang des Spin, also der Eigendrehung eines Teilchens, und seiner Bahn, also seiner Bewegung innerhalb des Atoms, der sich in der Stärke der Wechselwirkung des Teilchens bemerkbar macht. Diese Kopplung war für Elektronen bekannt, doch angestoßen von Fermis Frage stellte Goeppert-Mayer die Theorie auf, dass dieser Effekt auch im Atomkern wirke und konnte so die Bedeutung der ‚magischen Zahlen‘ in der Kernphysik erklären. Sie erläuterte es kurz und anschaulich wie folgt:

Denken Sie an einen Raum voller Walzertänzer:innen. Nehmen wir an, sie durchtanzen den Raum in Kreisen, jeder Kreis umschlossen von einem weiteren Kreis. Nun stellen Sie sich vor, Sie könnten zweimal so viele Tänzer:innen in einem Kreis unterbringen, indem Sie ein Paar mit und das andere Paar entgegen dem Uhrzeigersinn tanzen lassen. Nun bringen Sie noch weitere Variationen ein; alle Paare drehen sich um sich selbst wie Kreisel, während sie durch den Raum kreisen, jedes Paar dreht sich also um sich selbst (twirling) und durch den Raum (circling). Aber nur einige von denen, die gegen den Uhrzeigersinn durch den Raum tanzen, drehen sich auch im Uhrzeigersinn um sich selbst. Die anderen drehen sich im Uhrzeigersinn um sich selbst, während sie gegen den Uhrzeigersinn durch den Raum tanzen. Das gleiche ist wahr für die, die im Uhrzeigersinn durch den Raum tanzen: Einige drehen sich im Uhrzeigersinn um sich selbst, andere dagegen.

Übersetzt nach dem Abschnitt ‚Nuclear shell modell‘ des englischen Wikipediabeitrags

Zum gleichen Schluss waren zeitgleich die Physiker Otto Haxel, Hans D. Jensen und Hans E. Suess in Hamburg gekommen; Goeppert-Mayers Arbeit wurde zur Prüfung im Februar 1949 eingereicht, die der Hamburger Forscher im erst im April. Als Goeppert-Mayer in Juni 1949 die Ankündigung der Ergebnisse ihrer Kollegen las, versuchte sie noch, ihre Veröffentlichung zu verschieben, damit beide Arbeiten nebeneinander erscheinen könnten, doch dies ließ sich nicht mehr einrichten. So wurde zuerst Goeppert-Mayer als die Entdeckerin des Schalenmodells für den Atomkern bekannt. Es entstand jedoch ein gutes kollegiales Verhältnis zwischen Goeppert-Mayer und Jensen und die beiden brachten 1950 gemeinsam ein Buch zu ihrer Theorie heraus.

In den 1950er Jahren wurde Maria Goeppert-Mayer Mitglied der Heidelberger Akademie der Wissenschaften und der National Academy of Sciences, doch erst 1960 wurde sie endlich vollwertiges Mitglied einer Fakultät, als sie den Lehrstuhl für Physik an der University of California übernahm. Bereits kurz darauf erlitt sie einen Schlaganfall, der sie jedoch nicht von der Arbeit abhalten sollte. 1963 erhielt sie gemeinsam mit Hans D. Jensen eine Hälfte des Nobelpreises für Physik, die andere Hälfte erhielt Eugene Wigner. Goeppert-Mayer war die zweite weibliche Gewinnerin dieses Preises nach Marie Curie, 60 Jahre zuvor. Zu dieser Errungenschaft titelte damals die San Diego Tribune: ‚S.D. Mother Wins Nobel Physics Prize‘ (‚Mutter aus San Diego gewinnt Physik Nobelpreis‘). Hierzu bezog die Nachfolgepublikation The San Diego Union-Tribune im Oktober 2018 Stellung, anlässlich der Verleihung des Nobelpreises für Physik an die dritte Frau überhaupt, Donna Strickland, 55 Jahre nach Goeppert-Mayer.

Zwei Jahre später wurde sie zum Fellow der American Academy of Arts and Sciences. 1971 erlitt sie einen Schlaganfall, in dessen Folge sie ein Jahr lang im Koma lag, bis sie am 20. Februar 1972 verstarb. Die American Physical Society rief 1986 den Maria Goeppert-Mayer Award ins Leben, der jugnen Physikerinnen verliehen wird. Gewinnerinnen müssen einen Doktortitel innehaben, sie erhalten einen Geldbetrag und die Möglichkeit, an vier größeren Institutionen Vorträge über ihre Arbeit zu halten. Auch das Argonne National Laboratory verleiht jedes Jahr im Namen Goeppert-Mayers einen Preis an herausragende Wissenschaftlerinnen, ihre letzte Universität in Kalifornien hält ein jährliches Symposium in ihrem Namen, in dem Wissenschaftlerinnen zusammenkommen. Ein Krater auf der Venus von 35 Kilometer Durchmesser ist nach Maria Goeppert-Mayer benannt.

*

Ebenfalls diese Woche

22. Juni 1939: Ada Yonath
Über diese Chemikerin schrieb ich im Juni 2018.

23. Juni 1871: Jantine Tammes
Die Leidtragende des Matilda-Effektes trug entscheidende Erkenntnisse zur Pflanzengenetik bei, die jedoch ihrem männlichen Kollegen zugeschrieben wurden.

23. Juni 1951: Maria Klawe
Die amerikanische Informatikerin leitet seit 2006 als erste Frau das Harvey Mudd College in Kalifornien.

26. Juni 1862: Ella Church Strobell (Link Englisch)
Gemeinsam mit ihrer Kollegin Katharine Foot trug die Zellbiologin mit Fotografien zum besseren Verständnis der Chromosomen und ihrer Funktion bei.

22/2020: Claudia Alexander, 30. Mai 1959

Claudia Alexander (Link Englisch) kam in Vancouver in Kanada, zur Welt, wuchs jedoch in Santa Clara (Kalifornien), auf. Ihr eigentlicher Berufswunsch war Journalistin, doch ihre Eltern – eine Bibliothekarin und ein Sozialarbeiter – finanzierten das Studium und wollten, dass sie Ingenieurin werde. Sie fügte sich und arbeitete in einem Nebenjob in den Sommerferien im Ames Research Center, einem Forschungscenter der NASA. Dort arbeitete sie in der technischen Abteilung, doch sie begann sich auch für die Planetologie zu interessieren; sie schlich sich also in die wissenschaftliche Abteilung, um dort auszuhelfen, und stellte fest, dass ihr die Arbeit dort besser gefiel und leichter von der Hand ging.

So machte sie 1983 ihren Bachelor-Abschluss an der University of California, Berkeley, in Geophysik, weil sie dieses Fach für eine gute Basis in der Planetologie hielt. Zwei Jahre später machte sie ihren M.A. in Geo- und Astrophysik an der University of California, Los Angeles. In ihrer Abschlussarbeit untersuchte sie die Auswirkungen des magnetischen Zyklus der Sonne und der Sonnenwinde auf die Ionosphäre der Venus. Bis ins Folgejahr 1986 war sie sowohl am United States Geological Survey tätig, in der Erforschung von Plattentektonik, wie am Ames Research Center bei der Beobachtung der Jupitermonde. 1987 wechselte sie zur NASA, wo sie im Labor für Düsenantriebe zunächst als wissenschaftliche Koordinatorin arbeitete.

Sie erlangte 1993 ihren Doktortitel in Atmosphären-, Ozean- und Astro-Wissenschaften (Atmospheric, Oceanic and Space Sciences), speziell zum Thema astrophysisches Plasma (Link Englisch). In der finalen Phase der Galileo-Mission war sie als Projekt Managerin unter anderem für den kontrollierten Absturz der Sonde 2003 in die Atmosphäre des Jupiter verantwortlich. Die Galileo entdeckte 21 neue Jupitermonde und eine Atmosphäre („oberflächengebundene Exosphäre“) auf dem Mond Ganymed.

Neben den Jupitermonden, Plattentektonik, der Venus und dem astrophysischen Plasma forschte sie auch zur Entstehung und dem physikalischen Aufbau von Kometen, Magnetosphären und zur Unstetigkeit und Ausbreitung der Sonnenwinde. Sie war wissenschaftliche Koordinatorin bei der Cassini-Huygens-Mission zum Saturn und Co-Autorin von 14 wissenschaftlichen Schriften. Auch an der Rosetta-Mission der ESA, einer Sonde, die auf dem Kometen Tschurjumow-Gerassimenko landete, war sie als Projektwissenschaftlerin beteiligt.

Claudia Alexander setzte sich auch dafür ein, Frauen und Minderheiten verstärkt in die MINT-Fächer zu bringen – so schrieb sie unter anderem Kinderbücher und Science-Fiction-Romane. In ihrem TED-Talk „The Compelling Nature of Locomotion and the Strange Case of Childhood Education“ demonstrierte sie anhand des Themas der Lokomotion, wie sie wissenschaftlichen Unterricht für Kinder gestaltete.

TED-Talk von Claudia Alexander: „The Compelling Nature of Locomotion and the Strange Case of Childhood Education“

Leider erlag die vielseitige Planetologin am 11. Juli 2015 dem zehnjährigen Kampf gegen den Brustkrebs.

Die zwei Folgen „Ein wachsendes Problem“ (20a) und „Das ausgebrochene Bärtierchen“ (20b) der Kinder-TV-Serie Miles von Morgen sind ihr gewidmet.

*

Ebenfalls diese Woche

26. Mai 1821: Amalie Dietrich
Wenn ich mich recht entsinne, steht die Naturforscherin – zugegebenermaßen eine beeindruckend entschlossene Frau – auch in der Kritik, da sie neben botanischen Exemplaren auch menschliche Schädel aus Australien an Museen in der deutschen Heimat sandte.

27. Mai 1676: Maria Clara Eimmart
Die eigenen Beobachtungen stellte die Astronomin und ausgebildete Kupferstecherin in detaillierten Zeichnungen dar; darunter die Mondphasen sowie verschiedene Ansichten des Merkur, der Venus, des Mars, Jupiter und Saturn, einige Kometenformen und – nebenstehend – das Phänomen des Nebenmondes und der Nebensonne.

27. Mai 1959: Donna Strickland
Die Laserphysikerin erhielt als dritte Frau überhaupt 2018, gemeinsam mit zwei Kollegen, den Nobelpreis für Physik.

31. Mai 1887: Ethel Doidge (Link Englisch)
Die Fellow der Linnean Society of London trug als Mykologin und Bakteriologin zur Bekanntheit eines Phytopathogens bei, das Mangos befällt.

31. Mai 1912: Chien-Shiung Wu
Dafür, dass sie 1956 im Wu-Experiment die Paritätsverletzung bei schwacher Wechselwirkung nachwies und damit empirisch eine Hypothese bewies, dass in der Elementarteilchenphysik eine Vertauschung von rechts und links einen Unterschied machen kann – dafür hätte die Physikerin ebenfalls den Nobelpreis für Physik erhalten müssen; sie wurde dafür jedoch gar nicht erst nominiert. Sie erhielt jedoch 1963 den Comstock-Preis für Physik, 1975 die National Medal of Science und 1978 den Wolf-Preis in Physik.

18/2020: Marietta Blau, 29. April 1894

Die in Wien geborene Marietta Blau machte 1914 ihre Matura und studierte anschließend Physik und Mathematik an der Universität Wien. 1919 promovierte sie mit einer Dissertation „Über die Absorption divergenter γ-Strahlung“. Da sie in Wien keine Beschäftigung fand, ging sie zunächst nach Deutschland. Sie arbeitete bis 1921 in einer Röntgenröhren-Fabrik in Berlin, anschließend unterrichtete sie angehende Ärzte in Röntgenphysik am Institut für physikalische Grundlagen der Medizin an der Universität Frankfurt. Als 1923 ihre Mutter in Wien erkrankte, kehrte Blau nach Wien zurück. Bei ihrer Familie versorgt, forschte sie unbezahlt als wissenschaftliche Mitarbeiterin am Institut für Radiumforschung der Österreichischen Akademie der Wissenschaften. In den Jahren 1932 und 1933 konnte sie dank eines Stipendiums des Verbandes der Akademikerinnen Österreichs Forschungsaufenthalte in Göttingen und Paris absolvieren.

In ihrer Zeit in Wien arbeitete Marietta Blau mit Hertha Wambacher an einer Methode, atomare Teilchen photographisch sichtbar zu machen. Für Photographien wurden zu dieser Zeit Platten aus Glas oder Metall mit einer Emulsion aus Gelatine und lichtempfindlichen Silberverbindungen bestrichen, Blau und Wambacher entwickelten für ihre Forschungen eine spezielle Kernemulsion, mit der insbesondere Alphateilchen und Protonen durch Bestrahlung der Platten nachgewiesen werden konnten sowie anhand der Bahnspuren in der Emulsion erkennbar wurde, wohin ihre Energie gerichtet war. Für diese Arbeit erhielten die beiden Physikerinnen 1936 den Haitinger-Preis und 1937 den Lieben-Preis der Akademie.

Die Aufsehen erregendste Entdeckung der beiden waren die sternförmig verlaufenden Teilchenbahnspuren auf Photoplatten, die sie auf 2.300 Meter über Normalnull installiert hatten. Diese so genannten Zerstrümmerungssterne wiesen auf Kernreaktionen in der Photoemulsion hin, die mit Teilen der kosmischen Strahlung stattgefunden haben mussten.

Während ihre Kollegin Wambacher bereits seit 1934 Mitglied der NSDAP war, bedeutete der Anschluss Österreichs 1939 für die Jüdin Blau ein Ende ihrer Karriere im Land. Sie sah sich gezwungen, das Land zu verlassen, zunächst in Richtung Schweden, wo sie in Oslo mit Ellen Gleditsch am Chemischen Institut arbeitete. Zu Beginn des Zweiten Weltkriegs 1939 verhalf ihr jedoch die Vermittlung Albert Einsteins zu einer Anstellung an der Technischen Hochschule in Mexiko-Stadt. Da die Bedingungen dort jedoch auch nicht optimal waren, wechselte sie schließlich 1944 in die USA, wo sie zunächst vier Jahre lang in der Industrie tätig war, anschließend in diversen wissenschaftlichen Einrichtungen. Währenddessen setzten andere, die nicht politisch verfolgt wurden, ihre Forschungen in Wien fort und veröffentlichten darauf aufbauende Publikationen, in denen Marietta Blau mit keinem Wort erwähnt wurde. Ebensowenig wies Cecil Powell auf Wambacher und Blau hin, als er 1950 den Nobelpreis für Physik erhielt, obwohl seine Forschungen von den Entdeckungen der beiden Physikerinnen angestoßen worden waren – ein weiteres Beispiel für den Matilda-Effekt. Tatsächlich hatte Erwin Schrödinger eigentlich die beiden Frauen für den Preis vorgeschlagen.

1960 kehrte Marietta Blau nach Österreich zurück und arbeitete bis 1964 am Institut für Radiumforschung, sie leitete hier – wiederum unbezahlt – Arbeitsgruppe zur Analyse von photographischen Aufnahmen von Teilchenbahnspuren des CERN und betreute auch eine Dissertation dazu. Zwei Jahre vor ihrer Pesnionierung erhielt sie noch den Erwin-Schrödinger-Preis der Österreichischen Akademie der Wissenschaften, doch für eine Aufnahme in die Akademie reichte es nicht.

1970 trug die jahrelange ungeschützte Arbeit mit radioaktivem Material sowie ihr Zigarettenkonsum Rechnung, sie starb völlig verarmt und so gut wie unbemerkt in ihrer Geburtsstadt an Krebs. Erst 2004 widmete ihre ehemalige Schule ihr eine Gedenktafel, im Folgejahr wurde ein Saal im Hauptgebäude der Universität Wien nach ihr benannt.

*

Ebenfalls diese Woche

28. April 1854: Hertha Ayrton
Über diese Mathematikerin und Elektroingenieurin schrieb ich 2017, als ich mich mit Frauen im 19. Jahrhundert befasste.

WEG MIT
§218!