Schlagwort: chemie

Anna Volkova

† 1876

Anna Volkova (Link Englisch) war eine russische Chemikerin. Sie besuchte öffentliche Vorlesungen an der Universität Sankt Petersburg und eignete sich so viel Wissen an, dass sie von 1869 an bei Alexander Nikolajewitsch Engelhardt im Labor arbeitete. Sie hielt praktische Kurse für Studentinnen ab, der Urheber des Periodensystems Dmitri Mendelejew förderte sie dabei.

Volkova war die 1870 die erste Frau, die als Chemikerin einen Universitätsabschluss machte (in Russland?), die erste Frau, die in die russische Chemical Society aufgenommen wurde, die erste Russin, die ein wissenschaftliches Werk über Chemie veröffentlichte und sie wird gemeinhin als erste Frau betrachtet, die über ihre chemische Forschung in einem modernen Labor schrieb.

Ihr Fachgebiet waren organische Amide. Es gelang ihr – wiederum als erstes – einen Stoff herzustellen, der im englischen Wikipedia-Beitrag ‚orthotoluenesulfonic acid‘ genannt wird. Mit etwas Recherche konnte ich herausfinden, dass es sich um 2-Toluolsulfonsäure handeln muss (‚ortho-‚ beschreibt die Position des zweiten Substituenten an einem Ringmolekül). Diese Verbindung dient vor allem in anderen chemischen Reaktionen als Katalysator; Volkova bildete auch dessen Amide. Ebenso schuf sie als Erste eine Verbindung, die noch heute als Weichmacher in diversen Dingen verwendet werden: Trikresylphosphate (TKP).

frauenfiguren anna volkova paratricresylphospate
(para-)Trikresylphosphat

Weichmacher haben wohl nicht zu Unrecht einen schlechten Ruf. Dieser spezielle Stoff wurde und wird (nur) in Schmierstoffen und Hydraulikflüssigkeiten verwendet. Zum Beispiel in deutschen Torpedos im Zweiten Weltkrieg. Leider kamen 1941 einige Menschen in der Gegend um Eckernförde aufgrund der Nahrungsmittelknappheit auf die Idee, dieses Torpedoöl zu stehlen und als Lebensmittel zu verwenden, beim Braten und Backen. Dies führte bei etwa 70 Personen zur „Eckernförder Krankheit„: Einer Vergiftung durch TKP, die zur bleibenden Lähmung der Beine führte. Das gleiche war 1940 auch schon den so genannten Ölsoldaten in der Schweiz passiert.

Thereza Dillwyn Llewellyn

* 1821 • † 21. Februar 1926

Thereza Dillwyn Llewelyn (Link Englisch) war die Tochter des Botanikers und Fotografen John Dillwyn Llewelyn, als älteste von sechs Kindern kam sie in Glamorgan in Wales zur Welt. In einer Familie, in der sich mehrere männliche und weibliche Verwandte professionell mit der Fotografie beschäftigten, kam auch Thereza früh mit dem neuartigen Medium in Berührung.

Weil sich Thereza für die Astronomie interessierte, baute ihr Vater ihr zu ihrem 16. Geburtstag ein äquatoriales Observatorium (s.u. zur Erklärung ein 5-minütiges Video einer Herstellerfirma von optischen Geräten). Auf dem Landsitz bei Penllergaer baute die Familie gemeinsam an der Forschungsstätte des ältestens Kindes. In diesem machte Thereza Dillwyn Llewelyn verschiedene Experimente mit dem Fotografieren von Himmelskörpern, darunter etwa einige der ersten Fotografien des Mondes in den 1850er Jahren. Dillwyn Llewelyn musste dafür das Teleskop beständig leicht fortbewegen, um dem Mond lange genug für eine ausreichende Belichtung des Materials zu folgen. Auch eine Methode, Schneeflocken zu fotografieren, entwickelte sie gemeinsam mit ihrem Vater.

Beide waren auch in der Meteorologie tätig, indem sie in einer der von Freiwilligen betriebenen Wetterstationen der British Association for the Advancement of Science Daten sammelte. Sie hoffte auch, ihre Ergebnisse einmal bei einem Treffen der Association persönlich vortragen zu dürfen, doch dies wiederum gestattete ihr Vater ihr nicht.

Möglicherweise beobachtete Dillwyn Llewelyn 1858 Donatis Kometen (Link English) bereits, bevor er von seinem italienischen Namensgeber, Giambattista Donati angekündigt wurde. Im gleichen Jahr heiratete sie Nevil Story Maskelyne, mit dem sie zwei Töchter hatte und gemeinsame Experimente in der Chemie und Fotografie durchführte. Sie erstellte auch ein Herbarium und schrieb eine Arbeit, die in der Linnean Society of London vorgetragen wurde.

Auf der Fotografie oben, die ihr Vater von ihr machte, verwendete er auch die Technik des Fotogramms, dies übernahm auch Thereza für einige private Fotografien.

Erläuterung einer äquatorialen oder parallaktischen Montierung (Quelle: YouTube/Firma Bresser)

26/2020: Maria Goeppert-Mayer, 28. Juni 1906

Maria Goeppert wurde in Katowice, damals Preußen, in eine Familie von Professoren geboren. Als sie 10 Jahre alt war, zog sie mit ihren Eltern nach Göttingen. Dort besuchte sie eine höhere Schule, die speziell Mädchen für ein Universitätsstudium vorbereiten sollte; mit 17, ein Jahr früher als ihre Komiliton:innen, machte sie als eines von drei oder vier Mädchen das Abitur.

Zunächst studierte sie an der Universität Göttingen Mathematik, zu dieser Zeit um 1924 müsste sie auch Emmy Noether dort angetroffen haben. Nach drei Jahren Studium wechselte Goeppert jedoch zur Physik, in der sie nach weiteren drei Jahren ihre Dissertation über die Theorie der Zwei-Photonen-Absorption schrieb. Diese Theorie, dass ein Molekül oder Atom zur gleichen Zeit (innerhalb von 0,1 Femtosekunde) zwei Photonen aufnehmen kann und dabei in einen energetisch angeregten Zustand übergeht, konnte zu dieser Zeit nicht experimentell nachgewiesen werden. Dieses Ereignis ist extrem unwahrscheinlich: Die Absorption eines Photons in einem Molekül oder Atom geschieht in etwa einmal pro Sekunde unter guten Bedingungen, das heißt bei hoher Lichteinstrahlung. Die gleichzeitige Absorption zweier Photonen tritt hingegen unter den gleichen Bedingungen nur alle 10 Millionen Jahre auf. Erst 1961 konnte Goepperts Theorie dank der Erfindung des Lasers nachgewiesen werden, die Einheit, in der die Wahrscheinlichkeit einer Zwei-Photonen-Absorption gemessen wird, heißt ihr zu Ehren GM (Goeppert-Mayer). Ihre Prüfer im Rigorosum waren Max Born, James Franck und Adolf Windaus, alles drei zu diesem Zeitpunkt oder spätere Nobelpreisträger. Eugene Wigner, ebenfalls Nobelpreisträger, bezeichnete ihre Arbeit später als „Meisterwerk der Klarheit und Greifbarkeit“.

Im gleichen Jahr, in dem sie ihren Doktortitel errang, hatte sie auch Joseph Edward Mayer geheiratet, einen Fellow der Rockefeller Foundation und Assistent von James Franck. Mit ihm zog sie nach ihrer Promotion in die USA, wo Mayer als außerordentlicher Professor an der Johns Hopkins University lehrte. Goeppert-Mayer konnte dort keine Anstellung finden, denn die Hochschule hatte strenge Nepotismus-Regeln, die die gleichzeitige Beschäftigung von Ehepaaren untersagten. Diese waren ursprünglich eingerichtet worden, um Gönnerschaft zu unterbinden, doch inzwischen hielten sie hauptsächlich die Ehefrauen der Professoren von beruflicher Tätigkeit auf dem Campus ab. Goeppert-Mayer konnte sich schließlich gegen sehr kleines Gehalt im Fachbereich für Physik an der deutschen Korrespondenz beteiligen, so hatte sie auch Zugang zu den Laboren. In dieser Zeit arbeitete sie mit Karl Herzfeld an seinen Forschungen zur Quantenmechanik, sie unterrichtete auch unentgeltlich und schrieb eine Arbeit über doppelten Betazerfall. Sie kehrte bis 1933 noch dreimal nach Göttingen zurück, unter anderem um dort mit Max Born an einem Artikel für das Handbuch der Physik zu arbeiten. 1933 verloren Born und James Franck aufgrund der Judenverfolgung unter der faschistischen Regierung Deutschlands ihre Stellen an der Göttinger Universität, James Franck folgte seinem ehemaligen Assistenten nach Baltimore.

1937 wurde Mayer allerdings von der Johns Hopkins Universität entlassen, die Gründe dafür sind unklar. Mayer vermutete Misogynie, nämlich dass der Dekan es nicht gerne sähe, wie frei Mayer seiner Frau Zugang zu den Laboren gewährte. Herzfeld stimmte ihm zu, möglicherweise fühle sich aber auch das amerikanische Kollegium von „zu vielen Deutschen“ (das Ehepaar Goeppert-Mayer, Herzfeld und Franck) überrannt. Es soll auch Beschwerden über die Inhalte des Chemie-Unterrichts gegeben haben, den Goeppert-Mayer hielt: Sie spreche zu viel über moderne Physik. Goeppert-Mayer lehrte noch bis 1939 in Baltimore, dann wechselte das Ehepaar gemeinsam an die Columbia University in New York. Joseph Mayer konnte dort als Professor lehren, Maria Goeppert-Mayer bekam hier zwar ein eigenes Büro, doch für ihre Tätigkeit an der Fakultät wiederum kein Gehalt.

An der Columbia University freundete sich Goeppert-Mayer mit dem Chemiker Harold Urey und dem Physiker Enrico Fermi an und schloss sich deren Forschungen an, zu den Valenzelektronen der bis dahin noch unentdeckten transuranischen Elementen. Die Anzahl der Valenzelektronen, das heißt der Elektronen auf der äußersten Schale eines Elements, die an chemischen Verbindungen beteiligt sein können, bestimmen die Zugehörigkeit zu den unterschiedlichen Gruppen des Periodensystems und lassen Vermutungen über ähnliche chemikalische Eigenschaften zu. Basierend auf dem Thomas-Fermi-Modell, das die Elektronenhülle wie eine Gaswolke interpretiert, stellte Goeppert-Mayer die Voraussage auf, dass die Elemente, die im Periodensystem hinter dem Uran folgen müssten, zur Gruppe der Metalle der Seltenen Erden gehören würden. Diese Voraussage sollte sich als wahr herausstellen.

1941 wurde Maria Goeppert-Mayer zur Fellow der American Physical Society und im Dezember dieses Jahres trat sie ihre erste bezahlte Lehrtätigkeit am Sarah Lawrence College an. Nachdem die USA in den Zweiten Weltkrieg eingetreten waren, schloss sie sich im Folgejahr in Teilzeit dem Manhattan-Projekt an. Ihre Aufgabe wurde es, einen Weg zu finden, das Isotop 235U, einen wichtigen Spaltstoff, in natürlichem Uran auszusondern. Dafür untersuchte Goeppert-Mayer die chemischen und thermodynamischen Eigenschaften von Uranhexafluorid (Uran(VI)-fluorid), einer Verbindung von Uran und Fluor. Sie erwog die Möglichkeit, das gewünschte Isotop mit Hilfe einer photochemischen Reaktion aus dem Stoff auszufällen, doch dies war zu dem Zeitpunkt noch nicht praktikabel; auch hier wurde die Erfindung des Lasers notwendig, um Goeppert-Mayers Theorien in die Praxis umzusetzen.

Ihr Freund Edward Teller holte sie auch kurzzeitig ins Team seines Opacity Project, das die Erschaffung einer Superbombe (Link Englisch) anstrebte. Ihr Mann wurde an die Front im Pazifik berufen, und Goeppert-Mayer beschloss, die beiden Kinder in New York zu lassen und mit Teller in Los Alamo am Project Y zu arbeiten.

Nach dem Ende des Krieges wurde Joseph Mayer Professor für Chemie an der University of Chicago, Maria Goeppert-Mayer wurde von der Hochschule als freiwillige außerordentliche Professorin eingestellt. Teller folgte ihr nach Illinois, um die Entwicklung thermonuklearer Waffen voranzutreiben. Als ihr eine Teilzeitstelle am Argonne National Laboratory angeboten wurde, als leitende Physikerin in der Abteilung für theoretische Physik, antwortete sie erstaunlicherweise: „Ich verstehe nichts von Kernphysik!“ Sie trat die Stelle jedoch an. Außerdem programmierte sie den ENIAC des Aberdeen Proving Ground auf eine bestimmte Vorgehensweise für Schnelle Brüter.

Ihre wichtigeste, erfolgreichste Arbeit leistete Goeppert-Mayer trotz dieser vielseitigen Einsätze in den 1940ern. Während sie an der University of Chicago und dem Argonne angestellt war, entwickelte sie ein mathematisches Modell für den Aufbau des Schalenmodells, das sie 1950 veröffentlichte. Sie erklärte, warum eine bestimmte Anzahl Nukleone (Protonen und Neutronen) in Atomkernen besonders häufig vorkamen und besonders stabil sind. Diese Zahlen nannte Eugene Wigner die ‚Magischen Zahlen‚, die Reihe der „stabilen“ Protonen- und Neutronen-Anzahlen lautet 2, 8, 20, 28, 50, 82 und 126. Das Schalenmodell war für die Elektronen-aufenthaltswahrscheinlichkeitsräume des Atoms bereits erfolgreich, doch vom Atomkern bestand zu diesem Zeitpunkt noch ein anderes Modell, welches jedoch nicht die Inseln der Stabilität in den Elementen erklärte. Im Gespräch mit Enrico Fermi stellte dieser Goeppert-Mayer die Frage, ob es einen Hinweis auf Spin-Bahn-Kopplung gäbe – einen Zusammenhang des Spin, also der Eigendrehung eines Teilchens, und seiner Bahn, also seiner Bewegung innerhalb des Atoms, der sich in der Stärke der Wechselwirkung des Teilchens bemerkbar macht. Diese Kopplung war für Elektronen bekannt, doch angestoßen von Fermis Frage stellte Goeppert-Mayer die Theorie auf, dass dieser Effekt auch im Atomkern wirke und konnte so die Bedeutung der ‚magischen Zahlen‘ in der Kernphysik erklären. Sie erläuterte es kurz und anschaulich wie folgt:

Denken Sie an einen Raum voller Walzertänzer:innen. Nehmen wir an, sie durchtanzen den Raum in Kreisen, jeder Kreis umschlossen von einem weiteren Kreis. Nun stellen Sie sich vor, Sie könnten zweimal so viele Tänzer:innen in einem Kreis unterbringen, indem Sie ein Paar mit und das andere Paar entgegen dem Uhrzeigersinn tanzen lassen. Nun bringen Sie noch weitere Variationen ein; alle Paare drehen sich um sich selbst wie Kreisel, während sie durch den Raum kreisen, jedes Paar dreht sich also um sich selbst (twirling) und durch den Raum (circling). Aber nur einige von denen, die gegen den Uhrzeigersinn durch den Raum tanzen, drehen sich auch im Uhrzeigersinn um sich selbst. Die anderen drehen sich im Uhrzeigersinn um sich selbst, während sie gegen den Uhrzeigersinn durch den Raum tanzen. Das gleiche ist wahr für die, die im Uhrzeigersinn durch den Raum tanzen: Einige drehen sich im Uhrzeigersinn um sich selbst, andere dagegen.

Übersetzt nach dem Abschnitt ‚Nuclear shell modell‘ des englischen Wikipediabeitrags

Zum gleichen Schluss waren zeitgleich die Physiker Otto Haxel, Hans D. Jensen und Hans E. Suess in Hamburg gekommen; Goeppert-Mayers Arbeit wurde zur Prüfung im Februar 1949 eingereicht, die der Hamburger Forscher im erst im April. Als Goeppert-Mayer in Juni 1949 die Ankündigung der Ergebnisse ihrer Kollegen las, versuchte sie noch, ihre Veröffentlichung zu verschieben, damit beide Arbeiten nebeneinander erscheinen könnten, doch dies ließ sich nicht mehr einrichten. So wurde zuerst Goeppert-Mayer als die Entdeckerin des Schalenmodells für den Atomkern bekannt. Es entstand jedoch ein gutes kollegiales Verhältnis zwischen Goeppert-Mayer und Jensen und die beiden brachten 1950 gemeinsam ein Buch zu ihrer Theorie heraus.

In den 1950er Jahren wurde Maria Goeppert-Mayer Mitglied der Heidelberger Akademie der Wissenschaften und der National Academy of Sciences, doch erst 1960 wurde sie endlich vollwertiges Mitglied einer Fakultät, als sie den Lehrstuhl für Physik an der University of California übernahm. Bereits kurz darauf erlitt sie einen Schlaganfall, der sie jedoch nicht von der Arbeit abhalten sollte. 1963 erhielt sie gemeinsam mit Hans D. Jensen eine Hälfte des Nobelpreises für Physik, die andere Hälfte erhielt Eugene Wigner. Goeppert-Mayer war die zweite weibliche Gewinnerin dieses Preises nach Marie Curie, 60 Jahre zuvor. Zu dieser Errungenschaft titelte damals die San Diego Tribune: ‚S.D. Mother Wins Nobel Physics Prize‘ (‚Mutter aus San Diego gewinnt Physik Nobelpreis‘). Hierzu bezog die Nachfolgepublikation The San Diego Union-Tribune im Oktober 2018 Stellung, anlässlich der Verleihung des Nobelpreises für Physik an die dritte Frau überhaupt, Donna Strickland, 55 Jahre nach Goeppert-Mayer.

Zwei Jahre später wurde sie zum Fellow der American Academy of Arts and Sciences. 1971 erlitt sie einen Schlaganfall, in dessen Folge sie ein Jahr lang im Koma lag, bis sie am 20. Februar 1972 verstarb. Die American Physical Society rief 1986 den Maria Goeppert-Mayer Award ins Leben, der jugnen Physikerinnen verliehen wird. Gewinnerinnen müssen einen Doktortitel innehaben, sie erhalten einen Geldbetrag und die Möglichkeit, an vier größeren Institutionen Vorträge über ihre Arbeit zu halten. Auch das Argonne National Laboratory verleiht jedes Jahr im Namen Goeppert-Mayers einen Preis an herausragende Wissenschaftlerinnen, ihre letzte Universität in Kalifornien hält ein jährliches Symposium in ihrem Namen, in dem Wissenschaftlerinnen zusammenkommen. Ein Krater auf der Venus von 35 Kilometer Durchmesser ist nach Maria Goeppert-Mayer benannt.

*

Ebenfalls diese Woche

22. Juni 1939: Ada Yonath
Über diese Chemikerin schrieb ich im Juni 2018.

23. Juni 1871: Jantine Tammes
Die Leidtragende des Matilda-Effektes trug entscheidende Erkenntnisse zur Pflanzengenetik bei, die jedoch ihrem männlichen Kollegen zugeschrieben wurden.

23. Juni 1951: Maria Klawe
Die amerikanische Informatikerin leitet seit 2006 als erste Frau das Harvey Mudd College in Kalifornien.

26. Juni 1862: Ella Church Strobell (Link Englisch)
Gemeinsam mit ihrer Kollegin Katharine Foot trug die Zellbiologin mit Fotografien zum besseren Verständnis der Chromosomen und ihrer Funktion bei.

Elizabeth Fulhame

18. Jhdt.

Elizabeth Fulhame (Link Englisch) war vermutlich Schottin, sicher war sie mit einem Arzt verheiratet und lebte in Edinburgh.

Sie begann ihre Forschungen in der Chemie, weil sie eine Möglichkeit suchte, Stoffe mit Metallen und unter Lichteinfluss zu färben. 1780 hatte sie die Idee, Textilien mittels chemischer Reaktionen mit Gold, Silber oder anderen Metallen zu gestalten, ein Plan, der von ihrem Mann und dem Freundeskreis als „unwahrscheinlich“ abgelehnt wurde. Daraufhin machte sich Fulhame an ihre Untersuchungen und Experimente zu dem, was heute als Redoxreaktionen bekannt ist, die sie 14 Jahre lang beschäftigen sollten.

Sie versuchte, Metalle aus ihren Salzen zu gewinnen, in dem sie diese in unterschiedlichen Lösungszuständen – in wässrigen oder alkoholischen Lösungen oder trocken – verschiedenen Reduktionsmitteln aussetzte. Dabei entdeckte sie, wie durch chemische Reaktionen Metalle aus ihren Salzen herausgefällt werden konnten. Ihre Entdeckung, dass Metalle bei Raumtemperatur allein mit wässrigen Lösungen bearbeitet werden können, statt auf Höchsttemperatur geschmolzen zu werden, zählt zu den wichtigesten ihrer Zeit. Fulhame erreichte theoretische Erkenntnisse zu Katalysatoren, die als entscheidender Schritt in der Geschichte der Chemie gelten – und sie gelangte zu diesen noch vor Jöns Jakob Berzelius und Eduard Buchner.

Es ist interessant, dass Fulhames Entdeckungen über die Gewinnung von Metallen aus ihren Verbindungen in der europäischen Welt ein solches Ereignis war, wo doch Alchemist:innen im östlichen Mittelmeerraum und in China dies schon mehrere Jahrhunderte vorher vermutlich beherrschten (namentlich Fang im 1. Jahrhundert vor Christus, Maria Prophitessa um das 2. Jahrhundert nach Christus, Kleopatra die Alchemistin etwa 300 nach Christus und Keng Hsien-Seng zu Beginn des europäischen Mittelalters). Möglicherweise finde auch nur ich dies verwunderlich, weil ich die tatsächlichen chemischen Prozesse nicht vollständig begreife und/oder mir die Kenntnisse der Wissenschaftsgeschichte fehlen.

Eine weitere Hypothese, die Fulhame aufstellte und experimentell untermauerte, besagte, dass viele Oxidationsreaktionen nur durch Wasser möglich sind, Wasser an der Reaktion beteiltigt ist und als Endprodukt der Reaktion auftritt. Sie schlug als möglicherweise erste Wissenschaftlerin überhaupt Formeln für die Mechanismen dieser Reaktionen vor. Gleichzeitig wich ihre Theorie über die Rolle des Sauerstoff stark von herrschenden wissenschaftlichen Meinung ab.

Im 18. Jahrhundert war ein Großteil der Chemiker von der Phlogiston-Theorie von Georg Ernst Stahl überzeugt, die eine flüchtige Substanz für die chemischen Vorgänge bei Erwärmung und Verbrennung anderer Stoffe verantwortlich machte; Luft habe hingegen keinen Anteil an den Reaktionen. Dem Gegner der Phlogistontheorie, Antoine Lavoisier, konnte sie jedoch auch nicht in allen Hypothesen zur Rolle des Sauerstoff zustimmen.

Den gesamten Experimenten Fulhames lag ja der Wunsch zugrunde, Textilien mit lichtempfindlichen Chemikalien zu färben, und so machte sie auch Versuche mit Silbersalzen. Auch wenn sie nicht versuchte, Bilder mit dieser Methode zu gestalten, kam sie damit doch den Fotogramm-Versuchen Thomas Wedgwoods zuvor. Der Kunsthistoriker Larry J. Schaaf (Link Englisch) hält ihre Erforschung der chemischen Eigenschaften des Silbers daher für wegweisend in der Entwicklung der Fotografie.

1794 brachte Elizabeth Fulhame ihr Buch „Ein Essay über Verbrennung mit einem Blick auf die neue Kunst des Färbens und Malens, in welchem phlogistische und antiphlogistische Hypothesen als fehlerhaft bewiesen werden“ (An Essay On Combustion with a View to a New Art of Dying and Painting, wherein the Phlogistic and Antiphlogistic Hypotheses are Proved Erroneous). Ihre Experimente wurden im Vereinigten Königreich von Wissenschaftlern wahrgenommen und besprochen, Sir Benjamin Thompson und Sir John Herschel (Neffe von Caroline Herschel) äußerten sich lobend über Fulhames Arbeit.

Das Buch wurde vier Jahre später von Augustin Gottfried Ludwig Lentin (Link Englisch) ins Deutsche übersetzt, 1810 folgte eine Veröffentlichung in den Vereinigten Staaten. Noch im gleichen Jahr wurde sie zum Ehrenmitglied der Philadelphia Chemical Society ernannt; sie wurde von ihrem Zeitgenossen Thomas P. Smith gelobt: „Mrs. Fulhame erhebt nun so kühne Ansprüche auf die Chemie, dass wir ihrem Geschlecht nicht mehr das Privileg verweigern können, an dieser Wissenschaft teilzuhaben.“

Trotz des Erfolges hielt der amerikanische Herausgeber des Buches im Vorwort fest, dass Fulhames Arbeit längst nicht so bekannt sei, wie sie sein könnte oder sollte: „Der Stolz der Wissenschaft lehnte sich gegen den Gedanken auf, von einer Frau (‚a female‚) belehrt zu werden.“ Und auch Fulhame selbst gestand in der Einleitung ihres Textes, dass sie mit ihren Erkenntnissen auf Ablehnung gestoßen sei, aufgrund ihres Geschlechtes.

Doch Mißbilligung ist wohl unausweichlich: denn einige sind so dumm, dass sie mißmutig und still werden, und vom kalten Schauer des Schreckens erfasst werden, wenn sie etwas ansichtig werden, das sich auch nur einer Anmutung des Lernens nähert, in welcher Form dies auch auftrete; und sollte das Gespenst in der Form einer Frau erscheinen, die Stiche, unter denen sie leiden, sind wahrlich jämmerlich.“

übersetzt von Wikipedia

Fulhame war sich ihrer Rolle als Frau in der Wissenschaft durchaus auch bewusst; zwar hatte sie das Essay ursprünglich dafür niedergeschrieben, um mit ihren Entdeckungen und Erfindungen (zum metallischen Färben von Textilien) nicht plagiarisiert werden könnte. Doch ihr Werk sollte auch als ‚Leuchtturm für zukünftige Matrosen‘ dienen, womit weitere Frauen in der Wissenschaft gemeint waren.

Lavoisier konnte auf Fulhames Kritik an seinen Sauerstoff-Theorien nicht mehr reagieren: Sechs Monate vor der Veröffentlichung war er in der Französischen Revolution unter der Guillotine gestorben (begonnen hatte sein Abstieg wohl damit, dass er eine Abhandlung Marats über Verbrennungen kritisiert hatte). William Higgins, irischer Chemiker und ein weiterer Gegner der Phlogistontheorie, drückte sein Bedauern aus, dass sie seine Arbeiten nicht berücksichtigt hätte, in denen er die Rolle des Wassers bei der Entstehung von Rost beschrieben hatte. Doch hätte er ihr Buch mit großem Vergügen gelesen und wünsche innigst, dass ihrem löblichen Beispiel vom Rest ihres Geschlechtes gefolgt würde.

Marie Meurdrac

* vor 1613 • † ~ 1680

Marie Meurdrac kennen wir heute als Autorin des Buches La Chymie Charitable et Facile, en Faveur des Dames oder kurz La Chymie des Dames aus dem Jahr 1666.

Bei ihrem Geburtsjahr herrscht Unstimmigkeit, etwa 1610, auf jeden Fall vor 1613 kam sie als Tochter eines Notars in Mandres-les-Roses bei Paris zur Welt. Mit etwa 15 Jahren heiratete Marie Meurdrac einen Kommandanten der Garde des Charles de Valois namens Henri de Vibrac. Mit ihm lebte sie auf Château de Grosbois, wo sie gegen Ende der 1650er Jahre die Comtesse de Guiche (oder Guise) kennenlernte, die Ehefrau von Armand de Gramont. Die beiden Frauen standen sich wohl sehr nah, denn der Comtesse gilt die Widmung in La Chymie des Dames.

Meurdrac war Autodidaktin, doch aufgrund ihrer sozialen Stellung und des Vermögens der Familie ein gut ausgestattetes Labor und Zugang zu allen möglichen, auch exotischen und damit wertvollen Zutaten. Sie stand in der paracelsischen Tradition der Iatrochemie, ihre alchemistischen Experimente dienten der Ermittlung und Herstellung von Heilmitteln, im Gegensatz zum Beispiel zur alchemistischen Suche nach dem Stein der Weisen, der alle Stoffe zu Gold machen könne.

La Chymie des Dames ist ein Buch von 334 Seiten, aufgeteilt in sechs Teile. Im ersten Teil erläutert Meurdrac das alchemistische Handwerkszeug, bespricht Apparate und Gewichte, außerdem zählt sie 106 alchemistische Symbolde auf. In weiteren vier Teilen beschäftigt sie sich mit den heilkundlichen Wirkungen verschiedener Elemente: Teil Zwei beschäftigt sich mit pharmazeutischer Botanik, also mit Heilpflanzen, in Teil Drei mit der Medizin aus tierischen Produkten, in Teil Vier mit den Metallen – wobei sie diesen eher zurückhaltend gegenüberstand wegen ihrer Nebenwirkungen – und Teil Fünf befasst sich mit Arzneien, die aus den verschiedenen Stoffen der vorangegangenen Teile zusammengesetzt sind. Im letzten Teil geht sie besonders auf kosmetische Chemie ein, die den Frauen helfen soll, ihre Schönheit zu steigern oder zu erhalten.

In der Einleitung erzählt Meurdrac, dass das Buch als Notizensammlung für ihren eigenen Gebrauch begann; sie habe alle Experimente, Heilmittel und Kosmetika selbst erprobt. Sie spricht auch von dem „inneren Ringen“, das sie empfunden habe: Zwischen dem Ideal der Frau ihrer Zeit, von der erwartet wurde, „still zu sein, zuzuhören und zu lernen, ohne das eigene Wissen laut darzulegen“ und ihrem Empfinden, dass es eine „Sünde gegen die Wohltätigkeit sei, die Gott mir gegeben hat und die der Welt nützen kann“. Sie wisse, dass sie sich gegen die traditionelle Rolle ihres Geschlechtes wende, aber sie wolle ihr Wissen an andere Frauen und mittellose Schichten weitergeben. Denn schließlich sei sie nicht die erste Frau, die diese Aufgabe übernahm – sie nimmt insbesondere Bezug auf Maria Prophitessa – und dass „les ésprits n’ont point des sexe“, der Geist habe kein Geschlecht. Mit dieser ungewöhnlichen Aussage für diese Zeit gilt Marie Meurdrac auch als Protofeministin.

Ihr Buch erlebte bis in die Mitte des 18. Jahrhunderts hinein in Frnakreich fünf Neuauflagen, sechs in Deutschland und auch eine italienische Übersetzung. Marie Merudrac war mit großer Wahrscheinlichkeit eine Inspiration für Molières Die gelehrten Frauen.

Caterina Vitale

16. – 17. Jhdt.

Die in Griechenland geborene Caterina Vitale heiratete den Apotheker des Hospitalerordens auf Malta, Ettore Vitale – welcher der Hospitalerorden, darüber sind sich die deutsche und die englische Wikipedia nicht einig. Die deutsche Wikipedia verweist auf den Souveränen Malteserorden, die englische Wikipedia auf den Johanniterorden.

In jedem Fall starb Ettore Vitale 1590 und Caterina übernahm die Apotheke, sie musste das Recht darauf, dieses geschäftliche Erbe anzutreten, allerdings beim Zivilgericht einklagen. Mit der Apotheke übernahm Vitale auch die regelmäßigen Medikamentenlieferungen an das Ordens-Krankenhaus Sacra Infermeria in Valletta, sie damit die erste Pharmazeutin und Chemikerin Maltas und die erste weibliche Apothekerin des Ordens.

Sie war eine erfolgreiche Geschäftsfrau und konnte ein großes Vermögen anhäufen, mit dem sie wiederum die Karmeliter:innen unterstützte. Die maltesische Historikerin Christin Muscat (Link Englisch zur Times of Malta) allerdings beschreibt sie in ihrem Artikel von 2007 im Malta Independent (Englisch) auch als rücksichtlose, grausame Person. Sie habe auch Prostitution betrieben und die Freier, Ordensritter mit hehren Tugendidealen, hinterher mit deren Besuchen bei den Prostituierten erpresst. Es soll mehrere Klagen ihrer Sklaven gegen sie gegeben haben, die sie auspeitschte, und auch mit ihrer Tochter, die in einem Kloster lebte, hatte sie kein liebevolles Verhältnis. Nach dem gleichen Artikel habe Caterina allerdings auch mit 12 Jahren geheiratet und zwei Jahre später sei ihr Ehemann gestorben. Dies stimmt nicht mit den Daten bei Wikipedia überein; die korrekten Daten kann ich mit meinen bescheidenen Ressourcen nun nicht ermitteln.

16/2020: Esther Afua Ocloo, 18. April 1919

Esther Afua Ocloo kam unter dem Mädchennamen Nkulenu in der Region Volta zur Welt, ihre Eltern gehörten zum Volk der Ewe. Ihr Vater war Schmied, die Mutter Töpferin und Bäuerin, beide waren Analphabeten. Die Unterstützung und Fürsorge ihrer Großmutter ermöglichte Esther den Besuch einer presbyterianischen Grundschule in der Nähe. Als weiterführende Schule bot sich nur ein Internat an, in dem Esther unter der Woche lebte, doch für die Mahlzeiten dort hatte die Familie kein Geld. Stattdessen nahm sich das Kind am Wochenende Lebensmittel mit in die Schule, die sie sich dort selbst zubereitete. Mit 17 Jahren erhielt Afua Nkulenu ein Stipendium für die Achimota School (Link Englisch) (die wir bereits von Agnes Yewande Savage und Matilda J. Clerk kennen), die sie fünf Jahre besuchte und mit einem Cambridge School Certificate abschloss.

Nachdem sie mit diesem Abschluss ein Jahr arbeitslos geblieben war, eröffnete sie 1942 ein kleines Unternehmen, in dem sie Orangenkonfitüre und Saft herstellte. Sie war damit die erste afrikanische Gründerin an der Goldküste. Die Tatsache, dass eine Absolventin einer Eliteschule nun „im Straßenverkauf“ arbeitete, wurde in der Presse missbilligend veröffentlicht, doch die Artikel über sie führten schließlich dazu, dass sie nicht nur für ihre ehemalige Schule, sondern auch für die RWAAF (Link Englisch) produzierte und somit ihren Umsatz steigern konnte. Nach sieben Jahren als Unternehmerin ermöglichten ihre eigenen Mittel sowie das Sponsoring durch die Achimota School ihr ein Studium im Vereinigten Königreich. Von 1949 bis 1951 besuchte sie zunächst das Good Housekeeping Institut in London, das sie als erste Person afrikanischer Herkunft mit einem Diplom abschloss, danach schloss sie ein Aufbaustudium an der Universität Bristol an, an der sie im Bereich der Lebensmittelkonservierung promovierte.

Nach ihrer Rückkehr nach Ghana heiratete sie unter dem Namen Ocloo, in der Ehe bekam sie vier Kinder. Vor allem aber baute sie ihr Unternehmen aus und wurde in der Organisation der ghanaischen Wirtschaft aktiv. Sie gründete eine Herstellervereinigung und beteiligte sich an einer Messe mit ghanaischen Produkten. Für zwei Jahre war sie die Präsidentin des Zusammenschlusses, der später die Federation of Ghana Industries werden sollte. In den 1960er Jahren erweiterte sie die Produktion ihres Unternehmen auf Batiktextilien, 1964 wurde sie die erste weibliche Executive Chairman des ghanaischen National Food and Nutrition Boards.

In den 1970er Jahren begann sie, international zu arbeiten. Für die Stärkung der wirtschaftlichen und sozialen Positionen der Frauen in kolonialisierten Ländern richtete sie Workshops ein, in denen Frauen lernten, ihre Lebensmittelprodukte zu konservieren, um ihren Umsatz steigern zu können. Sie übernahm beratende Rollen für die Regierung Ghanas und die Vereinten Nationen bei der Ersten Weltfrauenkonferenz in Mexiko 1975. Außerdem begann sie im Bereich der Mikrokredite zu arbeiten und gründete 1979 die Weltfrauenbank, der sie bis 1985 als Vorsitzende diente. Mit diesen Mikrokrediten wurden zahlreiche Frauen wirtschaftlich unterstützt und konnten die Lebenssituation ihrer Familien und ihre soziale Position verbessern; leider gerieten Mikrokredite in den letzten Jahren schließlich doch in die Kritik, weil ihre Wirksamkeit nicht belegbar ist und sich die Kreditinstitute schließlich nicht unterstützend, sondern aggressiv gegenüber ihren Gläubigern verhielten.

Esther Afua Ocloo erhielt 1990 noch gemeinsam mit Olusegun Obasanjo den ‚Großen Afrikapreis‘ für ihre Arbeit. Das Preisgeld, $50.000,-, investierte sie in die Sustainable End of Hunger Foundation, eine Organisation, die Nahrungsmittelspezialisten ausbildet, um das gelernte Wissen in die ländlichen Regionen zu bringen. In dieses Projekt brachte sie 1993 auch das Preisgeld ein, das ihr der Gottlieb-Duttweiler-Preis des gleichnamigen Instituts einbrachte. Zur gleichen Zeit richtete Ocloo eine Musterfarm für den biologischen Anbau von Getreide und Gemüse ein.

Zeit ihres Lebens war Esther Afua Ocloo auch in der presbyterianischen Kirche für Frauen tätig. Sie starb 2002 an einer Lungenentzündung.

Die Seite Ghana Web widmet ihr eine detaillierte Auflistung aller Positionen und Tätigkeiten. (Dort lässt sich auch die Corona-Situation für Ghana und benachbarte afrikanische Länder verfolgen.) Auch in der Encyclopedia Britannica hat sie einen eigenen Eintrag.

*

frauenfiguren ida freund periodic table cupcakes
Ida Freund war die erste Person, die Periodic Table Cupcakes herstellte
Von Science History Institute, CC BY-SA 3.0

Ebenfalls diese Woche

15. April 1863: Ida Freund
In Wien geboren, wurde Ida Freund später die erste Universitätsdozentin im Vereinigten Königreich. Sie war Autorin zweier Chemielehrbücher und erfand eine Gasmessröhre, die nach ihr benannt wurde, doch heute nicht mehr in Gebrauch ist. Sie erfand auch die Periodic Table Cupcakes.

15. April 1961: Carol W. Greider
Die amerikanische Molekularbiologin erhielt für ihre Forschungen zum Enzym Telomerase 2009 den Nobelpreis für Physiologie und Medizin.

16. April 1921: Mary Maynard Daly
Als erste Afro-Amerikanerin/WoC erlangte sie einen Doktortitel in Chemie an der Columbia University. Sie trug entscheidende Erkenntnisse bei zur Chemie der Histone, der Proteinsynthese, der Beziehung zwischen Cholesterin und Bluthochdruck und der Aufnahme von Kreatinen in Muskelzellen.

Isabella Cortese

16. Jhdt.

Von Isabella Cortese ist wieder einmal so gut wie nichts bekannt außer einem Schriftstück: I secreta de la Signora Isabella Cortese (Die Geheimnisse der Signora Isabella Cortese) erschien 1561 und enthält (al-)chemistische, heilkundliche und kosmetische Rezepte. Bis ins Jahr 1677 wurde es elf Mal wiederaufgelegt und in mehrere Sprachen übersetzt, zwei Ausgaben existieren auf Deutsch.

Von der Goldherstellung über die ‘Entgiftung‘ der Gesichtshaut, Zahncremes, Seife, Kleber und einem Mittel gegen erektile Dysfunktion trug Isabelle Cortese zahlreiche ‘Geheimnisse‘ zusammen; sie erwähnt, die Werke anderer Alchemisten, namentlich Geber, de Villanova und Llull, gelesen zu haben, doch hätte sie davon nichts gewonnen als die Wahrscheinlichkeit, früher zu sterben. Stattdessen habe sie ihre Erkenntnisse alle aus eigener Forschung gewonnen, ihren Leser:innen riet sie zum eigenen Vorteil, die aus der Lektüre gewonnenen Erkenntnisse nicht weiterzuerzählen.

Der englische Wikipedia-Beitrag zu Isabella Cortese ist hier zwar nicht biografisch ergiebiger, enthält jedoch eine interessante Abhandlung über die ‘Geheimnis-Kultur‘ der Wissenschaft im 16. Jahrhundert: Wie ‘geheim‘ und ‘Experiment‘ zu dieser Zeit im Prinzip synonym waren, ‘geheim‘ aber nicht hieß, dass niemand davon wusste, sondern, dass das Experiment funktionierte. Derartige wissenschaftlichen ‘Geheim-Experimente‘ konnten wie eine Art Währung verwendet werden, um Schulden zu begleichen, sich Vorteile zu verschaffen oder gar in höhere soziale Kreise aufzusteigen.

In einer Umkehrung der üblichen Geschlechtermimikri besteht bei Isabella Cortese die Möglichkeit, dass es sich beim Autor des Buches um einen Mann handelte. Während Männer Zugang zu Bildung und Wissenschaft hatten, blieb die Kenntnis über weibliche Anatomie und Gesundheit ein Privileg der Frauen; dies versetzte die gesamte weibliche Gesundheitsfürsorge in eine ‘unwissenschaftliche‘ Nische, doch von Interesse für die weniger gebildete (weibliche) Bevölkerung. Ein weibliches Pseudonym für die Geheimnisse der Isabella Cortese könnte also dem doppelten Zweck gedient haben, die enthaltenen Kenntnisse wissenschaftlich zu diskreditieren und gleichzeitig für die weiblichen Leser glaubwürdig zu machen.

15/2020: Mary Emilie Holmes, 10. April 1850

Mary Emilie Holmes (Link Englisch) kam als Kind eines presbyterianischen Priesters in Ohio zur Welt, ihre Mutter war ebenfalls in der Kirche tätig und leitete zwei Jahre lang ein theologisches Seminar für Frauen. Mary Emilie war sehr sprachbegabt und an Naturwissenschaften interessiert. Schon mit 5 Jahren legte sie ein erster Herbarium an. Sie hatte einen neun Jahre älteren Bruder, der jedoch früh starb.

Die Familie zog nach Rockford, Illionois, als Mary Emilie 13 Jahre alt war. Dort waren ihre Eltern politisch und in der Kirche aktiv darin, befreite Sklav:innen zu unterstützen, die nach dem Ende des Sezessionskrieges Bildung und Unterhalt benötigten. Mit 14 Jahren besuchte sie das Rockford Female Seminary, das heute die Rockford University ist. Vier Jahre später schloss ihre Ausbildung dort zunächst mit einem Zertifikat ab. Während sie noch zwei weitere Jahre für ein Zertifikat als Organistin studierte, unterrichtete sie nebenher Spencerian Penmanship. Nach ihrem zweiten Abschluss arbeitete sie mehrere Jahre mit ihren Eltern in der Sozialarbeit für befreite Sklav:innen der presbyterianischen Kirche.

1877 ging sie zurück an die Universität, um dort Botanik und Chemie zu unterrichten. Als das Seminar im Schuljahr 1881/82 auch den Bachelor-Grad einführte, strebte Holmes diesen an; einige Mitglieder der Fakultät waren der Ansicht, sie müsse unter den gegebenen Umständen, dass sie bereits seit Jahren als Lehrende tätig war, den Titel B.A. erhalten, ohne weitere Arbeiten und Prüfungen abzulegen. Da jedoch darüber keine Einigkeit herrschte, legte sie schließlich doch einige Examen ab und erhielt 1882 den Bachelor.

Drei Jahre später beendete sie ihre Lehrtätigkeit, um an der University of Michigan zunächst einen Master in Literatur zu machen, weitere zwei Jahre später errang sie mit einer Dissertation über die Morphologie der Korallen als erste Frau an dieser Einrichtung einen Doktortitel in einem geowissenschaftlichen Fach. Schon von 1887 an unternahm sie zahlreiche geologische Expeditionen, bei denen sie zahlreiche Proben verschiedener botanischer und biologischer Arten sammelte und katalogisierte. Als begabte Künstlerin fertigte sie auch Zeichnungen an.

Als sie 1889 als erste Frau Fellow der Geological Society of America wurde, stand sie schon beinahe am Ende ihrer naturwissenschaftlichen Karriere. Diese Ehre wurde ihr zuteil einerseits, da sie in diesem Gebiet einen Doktorgrad erlangt hatte, und andererseits als Würdigung ihrer wissenschaftlichen Forschungsarbeit. In dieser Funktion hielt sie 1892 noch eine Rede auf der World’s Columbian Exposition, bei der sie forderte, Geologie frühzeitig als Fach in der Schule einzuführen. Doch im gleichen Jahr wandte sie sich bereits vollständig ihrer kirchlichen Arbeit zu.

Bereits 1890, nachdem ihre Mutter gestorben war, hatte sie mit ihrem Vater die Planung einer Schule für junge afro-amerikanische Frauen (WoC) begonnen. Diesen Plan setzten die beiden nun im Rahmen ihrer Kirchenarbeit in die Tat um. Eine erste Schule, die sie eröffneten, wurde bald darauf wieder geschlossen, weil der Direktor Morddrohung erhielt. 1892 gründete Holmes nun das nach ihrer Mutter benannte Mary Holmes Seminary, an dem WoC in Literatur, Grammatik, Geschichte, Naturwissenschaften, Mathematik, Musik, Bibellehre und Haushaltslehre unterrichtet wurden. Die Schule überstand zwei schwere Brände, 1895 und 1899, und musste jeweils mit Spenden, für die Holmes sich einsetzte, wiederaufgebaut werden. 1959 öffnete sich das Seminar von einem privaten Institut mit ausgewählten Schülerinnen zu einem öffentlichen Institut, bis 2005 blieb es unter dem Namen Mary Holmes College in dieser Form geöffnet.

Mary Holmes starb bereits 1906 im Alter von 55 Jahren.

*

Ebenfalls diese Woche

7. April 1782: Marie-Anne Libert
Die belgische Mykologin war die erste, die verschiedene Schlauchpilze beschrieb, die Pflanzen befallen können, außerdem das erste weibliche Mitglied der Société Royale des sciences Botaniques de Belgique.

12/2020: Katsuko Saruhashi, 22. März 1920

Katsuko Saruhashi (Link Englisch) beobachtete einmal als Kind, wie sicher wir alle, wie die Regentropfen auf einer Fensterscheibe nach unten liefen, sich vereingiten und stets neue Muster entwarfen. Bei Saruhashi führte dies zu einem wissenschaftlichen Interesse für das Wetter und die Natur. Nachdem sie zunächst bei einer Versicherung gearbeitet hatte, begann sie 1941 im Alter von 21 Jahren ein Studium der Chemie an der Toho University (Link Englisch). Dieses beendete sie zwei Jahre später nach dem ‚grundständigen Studium‚ (Englisch: undergraduate degree). Im Anschluss daran begann sie, beim Meteorologischen Forschungsinstitut zu arbeiten.

1955 schrieb sie eine Arbeit über das Gleichgewicht von Kohlensäuren in natürlichen Gewässern; daraus abgeleitet entstand die Saruhashi Tabelle, die es Meereskundler:innen ermöglicht, mit Hilfe der Messungen von Temperatur, pH-Wert und Chlorinität die Werte dreier verschiedener Kohlensäuren in Meerwasser zu ermitteln. Im Folgejahr widerlegte Saruhashi mit ihrem Mentor und Kollegen Miyake Yasuo die bis dahin gültige Annahme, dass erhöhte Kohlensäure und Alkalinitätswerte in Meerwasser allein eine Folge von darin aufgelöstem kohlensaurem Kalk sei. Sie lieferten empirische Werte dafür, dass Meerwasser tatsächlich doppelt soviel Kohlendioxid abgibt wie es aufnimmt; infolgedessen konnte nicht mehr angenommen werden, dass die globale Erwärmung dadurch gemildert werden könne, dass die Ozeane CO2 aufnehmen würden.

Anschließend nahm Saruhashi mit 37 Jahren erneut das Studium auf, dieses Mal an der Universität Tokio, wo sie schließlich die erste Frau Japans werden sollte, die einen naturwissenschaftlichen Doktortitel errang.

Ihr größter Erfolg wurden jedoch ihre Untersuchungen zu den langfristigen und globalen Folgen der Kernwaffentest werden, die die Vereinigten Staaten im Bikini-Atoll durchführten. Im Auftrag der japanischen Regierung suchten Saruhashi und Miyake am Central Meteorological Observatory nach neuen Methoden, radioaktiven Niederschlag zu messen. Im Verlauf ihrer Forschung stellten die beiden wesentlich erhöhte Werte von Caesium-137 und Strontium-90 im pazifischen Meerwasser fest, beides sekundäre Spaltprodukte zum Beispiel von Nuklearbomben. Ihr Fund wies also auf schwerwiegende Folgen der Tests auf dem Bikini-Atoll für den gesamten pazifischen Ozean hin.

Ihre Ergebnisse wurden von amerikanischen Forschern in Frage gestellt, unter anderem aufgrund der Standards für das Vorkommen von Caesium-137 im Meerwasser, doch auch das politische Klima zwischen den USA und Japan nach dem Zweiten Weltkrieg spielte eine Rolle. Die US Atomic Energy Commission stellte die Gelder zur Verfügung, damit Saruhashi für sechs Monate an der Scripps Institution of Oceanography an der University of California, San Diego gemeinsam mit Kollege Ted Folsom forschen und Ergebnisse vergleichen konnte. Die beiden unternahmen ihre Messungen nach ihren jeweiligen Methoden und bemühten sich, die Proben zur gleichen Zeit unter den gleichen Umständen zu nehmen, um die Vergleichbarkeit möglichst hoch zu gestalten. Obwohl ein gewisser Unterschied zwischen den Proben und damit den Ergebnissen unvermeidbar war, stellte sich am Ende ihres Forschungszeitraumes nur eine Diskrepanz von 10% zwischen ihren Ergebnissen heraus. Dies bedeutete nicht nur, dass sowohl Saruhashis Methode wie auch ihre Messergebnisse über jeden Zweifel erhaben waren. Es hieß auch, dass diese Befunde über den Zustand des Meerwassers im Pazifik als Grundlage verwendet werden konnten, um weitere überirdische Kernwaffentests der Vereinigten Staaten zu verbieten.

Im gleichen Jahr, 1958, gründete Saruhashi in ihrer Heimat die Society of Japanese Women in Science.

Nachdem sie ihren Doktortitel erlangt hatte, arbeitete sie in den 1970er Jahren zum pH-Wert des Regenwassers, wobei sie den steigenden Wert im Laufe der Dekade festhalten konnte. In den 1980er gewann sie mehrere Preise, namentlich den Avon Special Prize for Women im Jahr 1981 und – als erste Frau – den Miyake Priza für Geochemie 1985.

1981 rief Saruhashi einen eigenen Preis ins Leben, der seither japanischen Wissenschaftlerinnen bis 50 Jahre, die Beiträge in naturwissenschaftlichen Forschungen geleistet haben, $2.400 zukommen lässt. Gerne hätte Saruhashi den Gewinnerinnen mehr Geld zukommen lassen und sie auch bei Arbeiten im Ausland unterstützen, doch der Preis wird dafür zu gering finanziell unterstützt. Über ihre Beweggründe für die Preisverleihung sagte sie: „Der Mangel an gleichen Möglichkeiten ist eine Sache. Eine andere ist die Haltung der Gesellschaft, von Eltern und Lehrenden. Und die Beiträge von Wissenschaftlerinnen werden weniger anerkannt.

Am 29. September 2007 starb Katsuko Saruhashi im Alter von 87 Jahren an einer Lungenentzündung.

Dieser (englische) Beitrag zur Geochemikerin auf Massive Science hat noch einige Details zu den sexistischen und rassistischen Benachteiligungen, die sie insbesondere bei ihrer Forschung zu radioaktivem Niederschlag erleiden musste.

*

Ebenfalls diese Woche

16. März 1750: Caroline Herschel
Über die Astrologin habe ich 2016 geschrieben, in dem Jahr, in dem mich auf Frauen vor dem 19. Jahrhundert konzentrierte.

frauenfiguren anna atkins waldschachtelhalm cyanotypie
Anna Atkins‘ Cyanotypie eines Wald-Schachtelhalms
Gemeinfrei

16. März 1799: Anna Atkins
Eine starke Konkurrentin für die Frau dieser Woche, gilt sie doch als die erste Fotografin. Sie erlernte mit 40 Jahren innerhalb eines Jahres die Cyanotypie und veröffentlichte in Folge das erste Buch, das vollständig mit fotografischen Illustrationen auskam: Eine botanische Sammlung der in England vorkommenden Algen, British Algae: Cyanotype Impressions.

16. März 1866: Izabela Textorisowá (Link Englisch)
Als erste Botanikerin der Slowakei beschrieb sie in ihrem Herbarium mehr als 100 Pflanzenarten in der Region Turz.

20. März 1879: Maud Menten
Die Michaelis-Menten-Theorie der Enzymkinetik geht auf die kanadische Medizinerin zurück, die auch als eine der ersten Frauen Kanadas ein Medizinstudium abschloss.

20. März 1890: Elizabeth Rona
Gemeinsam mit Kasimir Fajans, George de Hevesy und Fritz Paneth entdeckte die österreichisch-ungarische Kernphysikerin die radioaktiven Tracer.

22. März 1920: Margaret Bastock (Link Englisch)
Die britische Zoologin und Genetikerin untersuchte die Zusammenhänge zwischen Verhalten, Genen und der Evolution; 1956 wies sie nach, dass die Veränderung eines einzigen Gens eine Verhaltensänderung bei Drosophila melanogaster auslösen konnte.

WEG MIT
§218!